REPORT OF CITY ELECTRICIAN'S.

$$
\text { City Electrician's Office, May 24th, } 1905 .
$$

To the Chairman and Members of the Board of Fire Department:
Gentlemen,-I beg to submit the following report respecting the Fire Alarm Telegraph System :-

The service during the year has been very satisfactory. The cost for repairs however, has been exceptionally high, due chiefly to the sleet storm of January 3rd end 4th. The aecumulation of ice on the lines at this time was the greatest I have ever seen, small wires being coated to the diameter of $1 \frac{1}{2}$ inches. Fortunately there were was very little wind blowing at the time or the damage would have much greater. As it was the damage to the Fire Alarm System will be in the vicinity of $\$ 1000.00$, between $\$ 700.00$ and $\$ 800.00$ of which yet remains to be expended in permanent repairs.

The storage battery outfit and controlling board mentioned in last report have since been put in service and are operating very satisfactorily. The cost for charging (about $\$ 5.00$ per month) is excessive, owing to the only direct current supplied by the Tram. Co. being too high for number of batteries now in service; besides the current is very unsteady necessitating more attention during charge. The waste of current will, however, be reduced as additional batteries are introduced when the contemplated installation of fifty tappers takes place, otherwise it would be in the interest of economy to instal a motor generator outfit.

The engine lathe and motor placed in Central Engine House this year are valuable additions to the equipment of the department.

The gravity trap locks for outside signal boxes have not yet been fitted, but I am advised by the manufacturer that they are nearing completion and will probably be installed during the summer months.

Authority has been granted by the previous Board and Council for the purchase and installation of the following apparatus:-

> 16 Circuit Automatic Repeater.
> 10 Signal Boxes.
> 50 Tappers.
> Line construction material for the above.
> 20 Additional Battery Equipment.
> 20 Glass front key protectors.

The above will constitute a valuable addition to the signaliing equipment of the department.

The destruction caused by severe sleet storms and the consequent interruption in the service merits the consideration of your Board. The only remedy that appears to be satisfactory is underground construction, and while it is expensive in first cost the increased reliability of the service together with the small cost for repairs would seem to make it of sufficient importance to warrant enquiry into. The Telephone Company are extending their underground system each year, and if some satisfactory arrangement could be made with them for the use of a duct so that a beginning could at least be made it would be a move in the right direction.

The signal boxes are being cleaned and where necessary repaired as opportunity offers and as soon as the locks are fitted they should be painted.

The following locations for the ten new signal boxes are submitted for your approval :-

> Morris and Edward Sts.
> Spring Garden Road and Birmingham St.
> Lower Water foot of Bishop St.
> Barrington and Prince Sts.
> Granville and Buckingham Sts. Agricola and Cunard Sts.
> Gottingen and North Sts.
> Campbell Road and Richmond St.
> Oxford St. and Chebucto Road.
> Louisburg St. and Jubilee Road.

- The following list comprises the equipment of the Fire Alarm Telegraph :-

13 circuit automatic repeater.

16 circuit automatic combination repeater and storage battery board.
160 cells B. T. storage battery.
23 miles of line wire.
40 signal boxes.
5 tower strikers and bells.
218 in. gongs.
415 in . gongs.
112 in . gong.
1.9 in . gong.

78 in. gongs.
15 in. gong.
4 Tappers.
Respectfully subinitted,
P. R. Colpitt, City Electrician.

CITY ENGINEER'S REPORT.

CITY WORKS DEPARTMENT.

COMMITTEE ON WORKS, 1904-1905.
A. B. Crosby, Mayor, Chairman.

Ald. D. H. Campbell,
Ald. W. S. Rogers.

OFFICERS :
F. W. W. Doane, M. Can. Soc. C. E., City Engineer.
H. W. Johnston, Assistant City Engineer.

WATER WORKS.
Ewen Morrison Foreman.D. P. O'NeilPlumbing Inspector.
John E. Burns Water and.'Meter.Inspector.STREETS, SEWERS, \&c.
John McDonald Foreman.
OFFICE.
James J. Hopewell Clerk of Works.
Miss Minnie Hunter. Stenographer.

City Engineer's Office, City Hafl,

Halifax, N. S., May 1st, 1905.
To His Worship the Mayor:
Sir, - I have the honor to present the report of the Department of City Works for the civic year ending April 30th, 1905, my fourteenth annual report:-

WATER WORKS.

Amt. expended to April 30th, 1904....\$1,128,153 02
". refunded from revenue 1904-5... 5,976 40
\$1,122,176 62

* expended May 1st, 1904, to April 30th, 1905. . $\$ 3,95196$
" repaid 1904-05........ 37152

$$
3,580 \quad 44
$$

1,125,757 06
Balance on hand
\$8,916 27

Ant. paid into Sinking Fund in excess of debt redeemed $\$ 12,50000$ cost of maintenance, 1904-05.
Interest. $\$ 47,14200$
Sinking Fund .. $\begin{array}{r}2,625 \\ 33,744 \\ 77\end{array}$
Maintenance of System

The increase in the maintenance expenditure is caused by the unusual quantity of work performed in the renewal of old mains. This extraordinary expenditure should not be charged to one year only in estimating the annual cost of maintenance, but should be averaged over a term of years.

Recently much has been written about Municipal ownership of public utilities, and opponents of the idea contend that it is impossible to carry on the affairs of a municipal department on a business basis, or in a way that would reflect credit upon the management if the department were a private business enterprise. It has been contended that public management is excessively costly and wasteful in comparison with private management.

Such is not the experience in Halifax. By reason of the application of business principles to the conduct of the affairs of the Water Department and the zealous and faithful services of the foreman the system has earned each year the entire cost of maintenance, renewals and repairs, with a margin of profit as well. These earnings do not include the value of the water used by the City for city buildings and work, public fountains, street sprinkling, sewer flushing and all other city purposes. If the value of the water used by the City is credited to the earnings of the Department, as it would be in the accounts of a private enterprise, the Water Department earns each year a handsome percentage on the total cost of the works in excess of the entire cost of maintenance.

At the same time the water rates are low in comparison with those of other places of the same or larger size. The mention of our minimum rate always causes surprise among ofticials in other cities.

A suggestion has been made recently for a reduction in the rates, principally fur the benefit of one class of water takers. Such a policy would be objectionable and unwise. We need all we earn for renewal of old mains, connection of dead ends and other much needed improvements in the system. Another, and the strongest argument against any reduction in the rate is the certainty that the present revenue will not be sufficient to pay the additional annual expenditure if it becomes necessary to augment the supply. It would not be wise to make any change until this feature of our water works policy is determined. The reduction would no doubt be a vote winner among the class benefitted but would be most
unbusiness-like, and therefore unworthy of the support of those who really have the welfare of the City at heart.

If it can be clained that the present low rate is a hardship on even the poorest, there is a remedy already available. Any householder who finds the charge of four dollars too large may apply for a meter and by a little care reduce his bill. Such a course has been adopted successfully by more than one water-taker already and more will follow as it becomes known that the meter is not so bad as it is painted.

NEW WORK.

There were seven petitions for the extension of main distribution pipes presented to the Council, and nine orders passed.

Extensions were made in five streets, one of which, measuring 154 feet, was in the low service district, the remainder, aggregating 998 feet, are high service. The total length of mains laid during the year was 7,968 feet, the total now in use being $69 \frac{3}{4}$ miles. Five thousand four hundred and sixty-two $(5,462)$ feet of old three-inch pipe was renewed with four-inch and 1,354 feet with six-inch.

Twelve new main stop valves and four hydrant valves were placed in service and fourteen were replaced by larger valves on new pipe. The total number in use is 804 .

Three old hydrants were replaced with improved City design frost jacket hydrants with steamer nozzles. Three new hydrants were installed, making the total 424 . Two thousand four hundred and thirty-three $(2,433)$ feet of pipe was laid for 67 new services and 1,730 feet of old service pipe was renewed.

CLEANING MAINS.

The low service supply main was cleaned on November 16th. The high service main was scraped three times, viz, on June 1st, September 1st and November 15th.

The most ditticult work was the cleaning of the north end high service distribution main. Hatch boxes were constructed at St. Andrew's Cross, junction of Robie Street and West Street, intersection of West Street and Agricola Street, and intersection of Agricola Street and Bilby Street. The 12 -inch pipe on Robie Street
(35 years old) was coated with tubercles about $\frac{1}{2}$ inch in thickness, the space between the tubercles being filled with a soft black deposit. The coating was heavier, tougher and thicker at St. Andrew's Cross than at the West Street end. The iron was as gond as new and not soft under the tubercles. On July 7th the scraper was run from St. Andrew's Cross to West Street, under a pressure of 42 pounds. It ran along easily and steadily, the valves being tight, and brought the deposit out ahead of it like porridge. It was run a second time on the same day. Two or three days later the West Street main was also cleaned.

The Agricola Street pipe had a heavy coating at West Street, but only a thin scale about $\frac{1}{8}$ inch thick at Bilby Street on the bottom of the pipe and scattered blisters on the sides and top. On July 15th the scraper was started at eleven o'clock a. m., with 43 pounds pressure at West Street. It ran to William Street all right, more slowly to Charles Street, then by short jumps. All branches were then shut off, raising the pressure to 57 pounds. The scraper passed North Street at 11.40, but stuck fast in the May Street branch when it reached that point. When taken out it was choked with the oxidation and stones 4 to 6 inches in diameter. The pipe was very tongh, a man with a sledge hanmer finding some difficulty in breaking the faucet off. The coating of the pipe was clean and bright on both sides and the iron uninjured.

On the night of July 20th the scraper was again inserted at West Street and ran past the May Street branch about 40 feet, but could not be forced further. The pipe was cut ahead of the scraper and found to be choke full. The formation was about $\frac{1}{2}$ inch thick (when dry) or the sides and $\frac{1}{4}$ or $\frac{3}{8}$ inch on the top. On the bottom there were no hard blisters or scale but a deposit of soft material something like marsh mud, easily removed with a tool and not likely to clog the scraper with the usual quantity of water going through. There was not enough getting through, however, to keep the pipe clear ahead, although the pistons (iron) were only $10 \frac{3}{4}$ inches in diameter. Half- a brick and some stones were removed with the scraper. About $7 \mathrm{p} . \mathrm{m}$., on the 21 st , the scraper having been replaced, full pressure was turned on but it refused to move. An effort was made to start it by a shock with the end of a plank, but under the high pressure the pipe split. The scraper was withdrawn, the front (leather) valve removed, re-inserted at the break and the pipe repaired. It started about one o'clock p. m., July 22nd, under full pressure and ran to Bloomfield Street valye where
it caught. On being freed it ran about 100 feet when it stopped again and had to be cut out. The coating at this point was about $5-8$ inches thick, and the toughest encountered in 24 years' experience. The iron was in good condition. The other leather valve was removed and under full pressure the scraper was forced to Bilby Street on the evening of July 25th.

The cleaning of this main has made considerable improvement in the service.

PRECIPITATION.

The total rain fall for the year 1904 was about the average. Rain fell on 120 days, snow on 58 days, rain and snow on 18 days.

The first sleighs appeared on the streets on the evening of December 13th and wheels were not again in service for over three months. The snow fall during the winter was the heaviest on record.

Long Lake overflowed in January, February, March, April, May and June. The surface of the lake on September 24th was 5 feet 10 inches below the waste weir. Spruce Hill Lake reached its highest level for the year, 364.46, on April 20th. On October 10th it was 3 feet below waste weir level.

AT THE LAKES.

No work of importance was carried on. The location and construction of the Halifux and South Western Railway along the water shed of Chain Likes, close to those reservoirs, makes it necessary to adopt the strictest precantionary measures for preserving the purity of the source from which three-fourths of our water is obtained. With the opening of the line for traffic the City Engineer requested the Superintendent of the Railway to make a regulation providing that all lavatories and closets shail be kept locked within ten miles of Halifax and take steps to carry it out strictly.

ON SERVICE.

The most noteworthy incident was in connection with ordinary repairs. A leak was reported on Pleasant Street at Smith Street, April 18th, 1904. When the pipe was uncovered it was located in a three-way branch. The main pipe is 12 -inch and a 9 -inch branch had been put in, but had not been used. The 9 -inch faucet had
been closed with a 10 -inch pine plug. The inner end, which was originally cut square, had been worn and furrowed so thit the length of the plug was reduced about three-quirters of an inch. There was a deep cleft from ead to end extending from the centre outwards about three-quarters of an inch wide at the inner face and a hole had been worn right through the centre of the plug about one-half inch in diameter. The pressure at the branch was forty pounds and the wood had been in the pipe for about forty yenc.

HIGH SERVICE SUPPLY.

The condition of the high service system has been so fully reported that little can be added. The Committee appointed in 1903-04 to confer with the City Engineer, reported at the Council meeting, held on June 23rd, 1904, recommending that steps be taken to hold as much water as possible in the lakes; that drastic -measures be i..ken to check the waste, and that the best hydraulie engineer available be employed to act in conjunction with the City Engineer in reporting on the whole question.

At the Council meeting on February 14th, Mr. Willis Chipman was employed as Consulting Engineer. Owing to the extraordinary weather conditions, he was unable to commence his work until the last week in April.

In this connection a table is appended, showing the quantity of water wasted by streams of different sizes. Reference to the table shows that a stream through an aperture one thirty-second of an inch in diameter wastes under $84-5$ pounds pressure, 122 gallons in 24 hours, or more than enough for an ordinary family. In the same time and under the same pressure, a one-half inch tap wastes 31,507 gallons, which is sufficient to supply an ordinary household for one year. Taking five as the average family, each one-balf inch tap under 26 pounds pressure can waste enough water to supply about three thousand persons for general household parposes.

SEWERS.

Only three sewers were constructed during the year. The Gottingen Street sewer was the most expensive, being constructed in winter and under the car tracks.

The length of sewers constructed under the Act from 1890 to 1904, inclusive, is 113,134 feet or $21 \frac{1}{2}$ miles.
Cost $\$ 508,84914$
Amcunt assessed on property owner:3 233,449 17
Balance paid by City \$275,399 97

Seventeen concrete catchpits were constructed, making a total of 761 . Ten temporary stone pits were built.

An additional appropriation of $\$ 150,000$ was authorized by the Legislature during the last session and several much-needed sewers will be provided during the coming year.

The growth of the city on the western slope of the peninsula is slow, but as that portion is built up a sewer system must be provided. Already property owners on Quinpool Road, west of the summit, have asked for a sewer, and hefore a single sewer is constructed complete surveys should be made and a design adopterl covering the whole area to be drained. The discharge of sewage into the North-West Arm at the foot of each street would be most objectionable, and if the work of construction bad become an absolute necessity in the past it is prohable that favorable consideration would have been given to a scheme for a separate system providing for the discharge of storm water at the foot of each street and an intercepting sewer to carry the house drainage down to the harbor. The septic tank now offers an alternative system, and no study of this problem would be exhaustive which did not include an investigation into the advisability of adopting this modern method of sewage disposal.

HoUse drains and plumbing.

One hundred and eleven permits were issued for laying, cleaning or repairing drains. In consequence of the lack of assistance in the office we have been unable to make maps, plans and records of sewers and drains, an ll the City will pay far more in the future for full and accurate information which should be on file now but for the questionable policy adopted. The small staff can overtake the routine work, but cannot keep up the growing general work of the City Engincer's office and complete records, plans and details, so necessary for intelligent and correct engineering management in the future.

It is discouraging indeed to be given no opportunity of placing the office in a better condition than it has been in the past. There
should be complete plans and profiles of all sewers and full and accurate records of the exact location of every drain. Such descriptive notes should be on file, that either the City authorities or any property owner at any time could obtain at once the fullest information. These are not unreasonable requests, but are in accord with the policy followed in every city which is admini-tered on sound business methods. Furnishing information to the public relating to sewers and drains is no small part of the work of the office.

In this connection the advisability of having all drains laid by the City should be considered. Street opening under permit is objectionable at best. If the drains were put in to the street line when the sewer is constructed, and the cost returned with thi: assessment, it would not be necessary to open the streets so often, and the result must be beneficial to the street and the pnblic generelly.

The Plumbing Inspector reports approval of 280 applications for permission to do plumbing work and 269 certifiates recommended for work properly pertormed.

The Board of Plumbing Examiners held seven meetings. Six journeymen received certificates and one was refused.

INTERNAL HEALTH.

The old sprinklers on four carts were replaced by Studebaker sprinklers and one wooden tank two-horse cart was made in the shops to reduce the mileage of streets watered by each team in the suburbs. The distance to be covered for several jears has been too great for any team walking at an ordinary gait.

This service has been sevcrely criticized from time to time, but efficiency under the existing conditions is impossible. At the same time there is room for improvement, and the men engaged in the work can make the service more satisfactory by carrying out strictly the instructions they receive.

First-class service cannot be obtained for the small sum assessed for this purpose. The total appropriation for-
Internal health is
$\$ 14,00000$
In 1904-5 this amount was expended as follows :-
Cleaning streets, labor and cartage $\$ 5,72974$
catch-basins, labor and cartage 2,008 55
Removal of ashes and garbage, labor. 1,872 90
Street sprinkling 1,022 92
Renewals and repairs, etc 59414
Repayment for work done before May 1st, 1904 2,771 75

Surely any fair-minded citizen must admit that not only is the amount at the disposal of the Department entirely inadequate for the work demanded, but the City employees give all that can be reasonably expected for the money. Where is the citizen who will undertake to keep our one bundred miles of streets clean for one year for $\$ 57.29$ per mile? And yet they expect the City officials to do it.

Even when cleaned frequently macadam roadways are dusty in the dry season and muddy in the wet. Our roads which are not cleaned frequently (to say the least) always have upon their surface a quantity of dust from the vehicle traffic and wear of the road material. With the number of teams available it is impossible to sprinkle each street more than twice a day, so that a street sprinkled at half-past seven o'clock a. m . is not sprinkled again until half-past one. Some streets are not reached until eleven-thirty and fivethirty, Such streets must of necessity have the dust blowing from early morning until the cart can reach them and from noon until late in the afternoon. In bright sunshine a strong breeze will dry our macadam roadways in half an hour, so that the dust must blow all day except during one hour (half an hour in the morning and half an hour in the afternoon) until we are prepared to spend money enough to sprinkle and clean the streets properly. It cannot be prevented by the favorite method of superficial observers, viz, abusing city officials. A man of moderate means does not get the luxuries enjoyed by the wealthy, and other cities enjoying the luxuries which excite the envy of Haligonians pay more than we seem to be able to afford.

Three sprinklers were operated by contract, one by Wm. Parsons at $\$ 3.70$ per day, one by George Harvey at $\$ 3.90$, and one by Robinson Bros at \$3.95.

Willoughby Smith tendered to supply teams for street and eatchpit cleaning at 19 cants per hour, but the Council decided to hire
teams by the day. The work cost about $\$ 600.00$ more than it could be done for by contract, and the additional dirt that could have been removed for that amount was left on the streets.

The removal of ashes and garbage is costing more every year, as the quantity to be removed increases. The increase in cost in the last two years, however, is due principally to increases in wages paid to drivers end laborers. In 1904-5 the cost was-

A great improvement could be made in this service if ashes and garbage could be taken from inside the premises by the City men so that the sidewalks would not be decorated for a day or a night with rows of barrels, cans, boxes, etc., filled with garbage and refuse of every description, offensive not only to the sight, but also to the nostrils, and littering the street with paper, straw, excelsior and flying dirt. The extra work could not be overtaken by the existing force, and a larger appropriation would be necessary.

There are other obstacles in the way, however. The work could not be performed at night, as many householders would refuse to leave their gate uniastened. In the business district, where there are no gates, stores are closed when the carts arrive at night. Removal of garbage during the day is decidedly objectionabie in summer ueless it can be done more frequently than we can afford. Some improvement might be made in appearance, at least, if receptacles for ashes and garbage were placed on the street for removal as close to the building line as possible, instead of at the curb. This cou!d be carried out on residential streets only where steps project beyond the building line. On business streets receptacles placed near the building line would be in the way of pedestrians.

The disposal of garbage is not a live question at present, but some provision must be made without delay for the disposal of night soil. This problem must be solved during the coming year. The question is under consideration, but is not yet ready for discussion.

STREETS.

The owners of property on the west side of Water Street,
between Duke Street and George Street, with one exception, refused the offer of the Council, and the land required for widening was expropriated. Mr. Geo, Wiswell was appointed arbitrator hy the City and Mr. Wm. Nisbet by the Governor-in-Council. The Board contirmed the appraisement of three properties, rectified a mistake on a fourth and increased the fifth $\$ 200.00$.

The Council decided to widen Agricola Street on the east side between Cunard Street and West Street, and the appropriation ($\$ 27,000.00$) had been provided and preliminary steps taken before the end of the year.

The Halifax Land Co. offered a deed of Livingstone Street through Merklesfield from Gottingen Street to Longard Road, but the acceptance was postponed until the City can afford to grade it or until the grading has been done by the property owners.

The north end of Lorne Terrace was claimed as private property and offered to the City for $\$ 4000$. His Honor the Recorder reported at the meeting of Council on October 6th, 1904, that it had becone public property, and on his recommendation a resolution was passed declaring it a public street.

The merchants doing business on Granville Street, between George Street and Water Street, petitioned for a permanent pavement and offered to pay 75 cents per foot frontage.

The Council decided to grant their request, and after an inspection of the Bitulithic at Glace Bay by members of the Council the recommendation of the representatives of the merchants was approved and a contract made subsequently with the Warren Bituminou: Paving Company of Ontario. The Halifax Electric Tramway Company were notified by resolution at the meeting at which Bitulithic was approved (August 25tb, 1904), to pave their track allowance with the same material.

The extraordinary snow-fall and the entire absence of thaws resulted in a great accumulation of snow on Water Street, and towards the last of March the streets became almost impassable for heavy traffic, as wheels had superseded runners and ruts and holes were growing deeper daily. The extent of the work required to clear the street was too great for the amount of money left in our small street appropriation after such a hard winter. Realizing the absolute necessity of solving the problem without further delay, a
public meeting was called on Murch 9th, 1905, whith was attended by all interested. The Council were requested to borrow $\$ 5,000$, and many Water Street merchants and truckmen volunteered to supply horses and men. The Council approved during the afternoon of the same day, and a large force working night and day under the supervision of the Works Departinent, and with the assistance of its employees, soon removed the snow and ice and restored the street to its summer condition. Sisty-seven teams and forty-six men were supplied voluntarily, the teams working a total of 970 hours and the men 733 hours.

The movement started by the Granville Street Association is in the direction followed by all municipal improvement bodies, viz, for cleaner streets and better wearing surfaces. We cannot have clean streets and freedom from dust without a more permanent wearing surface than macadam,

The remarks respecting the appropriation for street sprinkling apply with equal force to all street work. Citizens asking the Department to inake repairs late in the season frequently get the reply "our money is exhausted." They argue that it will require very little to do what they ask, but when all the "very littles" are added together they make a very large sum, and much necessary work cannot be done. The Works Department officials know well that more work should be done than they are able to do, but they also know that all the work that should be done would cost far more than the amount taxed for streat purposes. The appropriation is expended as far as it will go, but the rest of the work, no matter how urgent, must stand over for another year. The whole appropriation can be spent in patching alone without completing that necessary work. Where, then, is the money to come from to satisfy the demand for curbs, sidewalks, gutters, crossings, etc. ? People say what do we pay taxes for ; but one dollar of taxes will not pay for two dollars' worth of work. To make matters worse, the increase of wages further reduces the quantity of work that can be done for the amount taxed, consequently even less work must be done this year than list year. Individually, many citizens pay taxes enough, collectively they do not pay enough to keep up the public services properly. The City Works Department can satisfy all demands for work if they are given the money, but are as powerless without it as anybody else would be in the same position.

It is generally admitted that there is much room for improvement in the condition of our streets and sidewalks. Two features which tend to make the streets unsightly are the rain conductors and the cobble gutters. Both these nuisances have been condemned time and again, and some energetic move should be made to abolish them forever. Through the effirts of the Board of Health the regulations now provide that where new plumbing is constructed the rain conductors shall be connected with the drain. This, however, does not reach many existing obstructions.

The cobble gutters make the roadway narrower, as teams cannot drive on them. They are not neat in appearance, catch all dirt, are not cleaned by rains, grass grows in them and all dirt must be picked out first before it can be removed with a broom. The cleaning costs eight times as much as the cleaning of granite or concrete. The first cost of a cobble gutter is less than that-of granite or concrete, but in the end it is more expensive. It would be cheaper then to construct a short length of this kind of work each year and do it with granite, or in the suburbs of concrete. The Council should prohibit the laying of any more cobble gutters.

The sidewalk laid on South Park Street last year had a grass plot on the outside, purposely laid narrow. In front of many properties it is still in good condition, but in front of others $\mathrm{m}_{\mathrm{h}} \mathrm{h}$ birrels have been rolled over it, the chimes cutting up the sod, conal teams have been allowed to destroy it, and children have been permitted to tear it to pieces, until portions of it have disappeared and its original neatness is a thing of the past. How is it possible to keep up a respectable show when citizens will not take some pride in their own front door?

In almost all cities each person is responsible for his own sidewalk, which must be kept clean and the grass clipped and trimmed. We sadly need a campaign of education and the cultivation of civic pride.

Nearly all the sidewalk work for some time has been of tar concrete (asphalt and tar) construction. Our experience with this material does not justify its use in future. Its life is too short and cost of repairs too heavy. It should be abandoned for more per manent work. Cement concrete costs more to lay, but lasts so much longer that it would be better and cheaper in the end to lay a smaller quantity each year with a more permanent material than tar concrete.

PUBLIC BATHS

The Beach Bath was opened June 25th and closed September 17th. The number of bathers was:-Males, 4209; females, 1330 ; total, 5539. The expenditure was $\$ 620.75$; receipts, $\$ 295.10$.

The Floating Bath was opened June 29th and closed August 27th. The attendance was 3427 males, 422 females; total, 3849. Expenditure, $\$ 430.78$; receipts, $\$ 24.25$.

STREET RAILWAY.

Double track was laid on Granville Street, between Buckingham St. and George St., the only new construction during the year.

BUILDING ACT.

The new Act was put in operation, the City Carpenter assisting in the practical work of building inspection.

Two hundred and eighty-six permits were issued, 67 being for new buildings and 219 for repairs, alterations, renewals, additions, \&c.

Eight violations of the law were reported to His Honor the Recorder for action.

| Date of
 report. | Owner. | Location. | Violarins. |
| :--- | :--- | :--- | :--- | :--- |

CABLE CONDUITS.

The statement appended shows the underground work performed during the year.

The report of the Clerk of Works shows the total
GENERAL EXPENDITURE.
Baths $\$$ 1,015 28
Teams and Stables 4,97620
Insurance . 1,097 25
Telephones. 24350
Street Lighting 19,669 55
City Hall Lighting 75000
Citadel Improvement. 2609
Fuel................................. . . . 1,167 45
Internal Health. 14,01364
Sewers . 11,018 78
City Property. $\quad 2,21302$
Streets . 33,763 40
Water Construction 8,91627
Water Maintenance 84,597 32
\$183,467 75
Total labor pay roll. 61,622 12
The reports of Foremen, Inspectors, etc., and statements of expenditure, etc., are appended.

Respectfully submitted.
F. W. W. Doane,

City Engineer.

TABLE SHOWING NUIBER OF GALLONS OF WATER DISCHARGED
Through Different Sized Apertures, and with Different Heads of Water, in a Minute, and in Twenty-four Hours.

Diameter of Aperture in inches.		$\frac{\frac{1}{32}}{\substack{\text { Gallons } \\ \text { Discharged. }}}$		$\frac{1}{16}$ allons charged.		\qquad allons charged.				$\frac{\frac{1}{4}}{\substack{\text { Gallons } \\ \text { Discharged. }}}$		$\frac{3}{8}$ \qquad Gallons Discharged.		$\frac{\frac{1}{2}}{\substack{\text { Gallons } \\ \text { Discharged. }}}$				$\frac{\frac{3}{4}}{\substack{\text { Gallons } \\ \text { Discharged. }}}$		$\frac{\frac{7}{8}}{\substack{\text { Gallons } \\ \text { Discharged. }}}$	
$\begin{aligned} & \text { 4 } \\ & \text { \$ } \\ & \text { 5 } \\ & \text { - } \end{aligned}$																					
		느ํ			$\begin{aligned} & \text { a } \\ & \text { a } \\ & \text { 4. } \\ & 4 \end{aligned}$			\dot{y}		흥				㐫范		농		를	$\begin{aligned} & \text { ※ } \\ & \text { ~ } \\ & \text { 흘 } \\ & \text { air } \end{aligned}$		
20	8.	. 085	122.	. 34	489.6	1.36	1,958.4	3.07	4,420	. 47	7,577	12.31	17,726	21.88	31,507	44.1	49,104	49.2	70,818	87.0	6,480
40	17.6	. 12	172.8	. 48	691.2	1.93	2,379.2	4.35	6,2	7.73	11,131	40	25,056	30.94	44,553	48.3	2	69.6	100,224	94.7	8
60	26	. 148	21	. 59	849.6	2.36	3,398.4	5.32		9.47	13,636	21.31		37.89		59.2	85,248	87.25	125,640	116.	0
80	35.2	. 17	24	. 68	979.2	2.73		6.15	8,856	10.94	15,753	24.62				68.3		98.4		134.	
100	44	. 191	27	. 76	1,094.4	305	4,392	6.88	9,907	12.24						76.4	110,016	110.1	4	149.9.	215,856
120	52.8	. 21	302	. 83	1,195.2	3.35	4,82	7.63	10	13.04	19,296	30.15	43,416	53.6	1	83.7	120,528	120.6	4	164.1	236,304
140	61.6	. 227		. 905	1,303.2	3.61	5,1	8.14		14			5	57.91	88		5	130.3	2	177.3	255,312
160				. 967	1,392.4	386	5,55	88	12,	15	22,276	. 815	50,126	61.88	89,10	96.69		139.2	200	189.5	
180	79.2	. 257	370.	1.02	1,468.8	4.1	5,9	9.23	13,	16.38	23,587	3	53,179	65.65	94,536	02.58	147,71ŏ	147.7		201	289,440
200	88.	. 271	390.2	1.08	1,555.2	4.32	6.220 .8	9.73	14,011	17.30	24,912	38.94	56,073				55.764	155.7	224,208	212.	305.280

Table Showing Number of Gallons of Water Discharged，Etc－（Continued．）

Diameter of Aperture in inches．				$\frac{1 \frac{1}{8}}{\substack{\text { Gallons } \\ \text { Discharged. }}}$			$\frac{1 \frac{3}{8}}{\substack{\text { Gallons } \\ \text { Discharged．}}}$		$1 \frac{1}{2}$ Gallons Discharged．		$\frac{1 \frac{3}{4}}{\substack{\text { Gallons } \\ \text { Discharged．}}}$		2 Gallons Discharged．		$2 \frac{1}{4}$ Gallons Discharged．		$2 \frac{1}{2}$ Gallons Discharged．	
岕	安宽家																	
苞		这			玄気	玉it ${ }^{\text {¢ }}$	号		这	$\begin{aligned} & \text { जै } \\ & \text { जै } \\ & \text { ¢ } \\ & \text { on } \\ & \hline \end{aligned}$	尔		会		喊		边	
20	8.8	5	126，000	$110.7159,408$	136.7	196，848	165.4	238，176	196.9	283，536	26	5，920	350.1	504，144	433			
40	17.6	123.71	178，128	150．6 225，504	193.3	276，352	233.9	336，816		400，806	37	70		00				
60	26.4		218	191．8 266,192	236.8	340，092	286.5	412，560	341.5	491，760	464.	668，160	$60 ¢ .2$	872，028	767.3	1，104，912	947.3	1，364，112
80	35.2	17		$221.5818,060$	273.5	393，840	330.9	476，496	393.9	567，216	536.	771，684	700.2	1，008，288	886	1，276，128	1094.1	1，564，112
100	44.8	195.8		247.8 356，832	305.8	440，352	370.2	533，088	440.6	634，464	58	863.568	783.3	1，127，952	901.4			
120	52.8			271.339	33	482，400	405.3	683，632	482.4			945，504		1，235，088				
140	61.6			293.2 422，208	361.9	521,136	437.9	630，576	521.2	750，528	709.4	1，021，538	026.6	1，33				
160	70.4		350	313.2 451，008	386.75		467.9	673，776	556.9	801，986	758.	1，091，52	090.1	1，425，744	1253.1	1，804，464	1547.	2，227，680
180	79.2		378	332.3 478，512	410.3	500，832	496.4	714，816	590.	850，752	804.	1，158，0	50.4	1，512，576	1320.4	1，914，33	1641.3	2，363，472
20	88.	276.9	308，736	$350.4504,576$	432.6	622，944	523.5	753，840		807，120		1，221，120	1107.6	1，594，944	1401.	2，018，736	1730.7	2，492，206

Table Showing Number of Gallons of Water Discharged，Etc．－（Continued．）

Diameter of Aperture in inches．		$2 \frac{3}{4}$ Gallons ischarged．		3		$3 \frac{1}{2}$		4		$4 \frac{1}{2}$		5		$5 \frac{1}{2}$		6	
				Gallons Discharged．													
		${ }_{\text {on}}$	＊${ }_{\text {a }}^{\text {a }}$	E		浯		$\underset{\sim}{4}$		会		，	สi		大亏 ${ }_{\text {a }}^{\text {a }}$		＊
20	8.8	665	957，600	787	1，134，144	1.072	1，5	1，400	2，0	1，		8	0	2，660	3，880，400	3，148	20
40.	17.6	944	1，358	1，113	1，6	1，5	2，18	1，980	2，851，200	2，506	0	3，094	360	3，776	$5,437,440$	4，452	410，880
60	26.4	1，151	1，6	1，366	1，9	1，8	2，672，640	2，424	3，491，712	3，068	48	3，780	8	4，604	6，629，760	5，464	868，160
80	35.2	1，820	1，918	1，575	2，268，864	2，1	3，087，736	，2，801	4，032，152	3，5	2	4，376	6，302，016	5，316	7，655，040	6，300	0
100	44.8	1，478	2，1	1，762	2，	2，38	3，454，272	3，	4，5	3，96	4	4，895	7，049，664	5，912	8，513，280	7，048	10，149，120
120	52.8	1，628	2，84	1，829	2，	2，62	3 ，	3 ，	4，940，952	4，342		5，361	7	B，5	280	7，716	11，111，040
140	61.6	1，760	2，53	2，084	3，00	2，837	4，086，144	3，706	5，387，792	4，691		5，791	，	7，040	0	8，336	
160	70.		2，7	2，227	8，2	3，032	4，366，080	3，960	5，702，976	б，		6，18	8，910，720	7，52	10，828，800	8，908	
180	78.2	1,	2，8	2，363	3 ，	3 ，		4.2	6，050，304	5，	7，657，344	6，565	，45	7，97	1	，45	
200	88.	2，102	3，026	2，492	3，	3，392	4，	4，	6，379，776	5，60	8，074，944	6，922	，968，832	8，408	12，107，520	，968	
225	97.4	2，229	3，209	2，673	3，8	3，612	5，201，280	4，717	6，792，480	5，968	8，503，920	7，368	10，600，920	8，916	12，839，040	10，695	
250	108.2	2，346	3，378，240	2，702	4，820，480	3，800	5，472，000	4，964	7，148，160	6，280	9，043，200	7，753	11，164，320	9，384	13，512，960	11，168	16，081，920

NEW UNDERGROUND WORK LAID IN HALIFAX BY THE NOVA SCOTIA TELEPHONE CO.. LTD., 1904.

MAINS.

From manhole at the corner of Spring Garden Road and Pleasant Streets, 6 ducts south, 486 feet to manhole at Bishop Street.

Thence 6 ducts 475 feet to manhole at Morris Street.
Thence 4 ducts 373 feet to manhole at Harvey Strret.
Thence 4 ducts 289 feet to manhole at South Street.
Thence 4 ducts 197 feet to manhole at Tobin Street.
Thence 4 ducts 340 feet to manhole at Kent Street.
From manhole at the cornor of Hollis and Sackville Streets, 4 ducts 371 feet north to manhole at Prince Street.

BRANCHES.

From manhole at Morris Street, 1 duct 22.6 feet to pole in southwest corner of Morris and Pleasant Streets.

From manhole at Morris Street, 1 duct 88 feet to pole in southeast corner of Pleasant and Morris Streets.

From wanhole at Harvey Street, 1 duct 47 feet to pole in southwest corner of Harvey and Pleasant Streets.

From manhole at South Street, 1 duct 61 feet to pole north-west corner of South and Pleasant Streets.

From manhole at South Street, 1 duct 50 feet to pole in southeast corner of Pleasant and South Streets.

From manhole at Tobin Street, 1 duct 43 feet to pole in northwest corner of Tobin and Pleasant Streets.

From manhole at Kent Street, 1 duct 55 feet to pole in northwest corner of Kent and Pleasant Streets.

From manhole at Kent Street, 3 ducts 110 feet to pole in southeast corner of Pleasant and Victoria Lane.

From manhole at Hollis and Prince Streets, 1 duct 168 feet to pole north of Prince.

From manhole at Hollis and Prince Streets, 1 duct 63 feet to pole south-west corner of Hollis and Prince.

From manhole corner of Granville and Duke, 2 ducts 213 feet to pole south-west corner of Hollis and Duke.

From manhole corner Barrington and Buckingham, 1 duct 49.6 feet to pole south-east corner Barrington and Buckingham.

5659 feet of cable was pulled in, containing 361 miles of wire.

REPORT FOREMAN WATER DEPARTMENT.

F. W. W. Doane, Esq., City Engineer,

Sir,-The following is the Annual Report of stock belonging to the Water Department, length of main and service pipes laid, length of pipes cleaned and re-cleaned, and location of houses supplied with water during 1904.

All of which is herewith respectfully submitted.
E. Morrison, Foreman Water Department.

New Mains.

OLD MAINS REPLACED WITH LARGER MAINS.

[^0]Total length in feet of Cast Iron Water Mains in the Water Supply System.

	Size of Pipe in Inches.											Total.
	27	24	20	15	12	9	8	6	4	3	Less than 3 in.	
Length December 31st, 1903. Laid during 1904..........	14560	20524	6712	44236	37201	43127	415	$\begin{array}{r} 133765 \\ 2531 \end{array}$	$\begin{array}{r} 27810 \\ 5462 \end{array}$	37469	898	$\begin{array}{r} 366717 \\ 7993 \end{array}$
	14560	20524	6712	44236	37201	43127	415	136296	33272	*30653	898	*367894

Equal to $69 \frac{35}{5} \frac{574}{8} \frac{5}{8}$ miles.
*6816 feet of 3 inch pipe replaced by 4 inch and 6 inch.
N. B. -45 feet of 20 inch pipe in waste way Chain Lakes, and pipes from mains to hydrants (except wharves) laid previous to 1897, not included in above summary.

Pipe Cleaning by Mechanical Scrapers.

Date.	Location.			Cost.	Remaris.
June 1st.	High Service Main.	$\begin{aligned} & 20 \\ & 15 \end{aligned}$	$\left.\begin{array}{r} 6712 \\ 29628 \end{array}\right\}$	\$15 80	Re-cleaned.
June 27th.	Robie from Willow Tree to West Street West St. from Robie to Agricola Street	12	1595 925	74130	Cleaned.
July 11th.	Agricola from West to Bilby St.	12	2952		,
Sept. 1 1st.	High Service) (....	15	$\left.\begin{array}{r}6712 \\ 29628\end{array}\right\}$	1554	Re-cleaned.
Nov. ${ }^{15}$ th.	"	20	$\left.\begin{array}{r}6712 \\ 09628\end{array}\right\}$	2421	-
Nov. 16th.	Low Service Main	24	13400	1634	"

New Service Pipes.

$\frac{1}{2}$ Inch. Feet.	$\frac{3}{4}$ Inch. Feet.	1 Inch. Feet.	2 Inch. Feet.	3 lnch. Feet.	Total length Feet.
2373	41	18.6	$\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	2432.6	

House Services Renewed.

$\frac{1}{2}$ inch. Feet.	linch. Feet.	Total length Feet.
	1677	53

New Hydrants.

Street.	Location.	荮	$\begin{gathered} \stackrel{\circ}{y} \\ \stackrel{y}{\circ} \\ \stackrel{y}{\circ} \end{gathered}$				
Cunard Sp . Garden Rd. West Young	Cor. Moran Cor Carlton Cor. King .	$\begin{gathered} \text { City .. } \\ \text { ". } \\ \text { ". } \end{gathered}$	H.	6 6 6	${ }_{9}^{9}$	3 3 3	fr. in 5

Old Hydrants Replaced with Frost Jacket Hydrants.

*Hydrant moved.

Summary of Hydrants.

No. of Hydrants on Streets December 31st, $1903 \ldots . .$. 368
" " Wharves " "
" " " \quad Military and Naval property, Dec. 31 ist, $1893 .$.
". ". in use December 31st, 1903.................... 421
". " set on streets in 1904....................................... 3
" " in use December 31st, 1904.................... 424

New Valves.
ON MAINS.

Street.	Location.	Size.	Service.
	N. side Cogsweil, N. E. cor. house, $23^{\prime} 8^{\prime \prime}$, S. of line Cogswell 14' $8^{\prime \prime}$ S. side Spring Garden Road, S. E. cor house, $39^{\prime} 4^{\prime \prime}$, S. of cor. $0^{\prime} 3$	Inch.	
Bauer Carlton \qquad		4	High.
Cedar	E. side Louisburg, S. E. cor. house (not porch), $2 \breve{o r}^{\prime} 8^{\prime \prime}$	6	
	E. side Chestnut Place, N E. cor. $19{ }^{\prime} 5^{\prime \prime}$, a little E.	6	،
Moran	S. side Sarah, S. E. cor. $23^{\prime} 9^{\prime \prime}$ S. of cor. $0^{\prime} 3^{\prime \prime}$ N. side Cunard, N. E. cur. $18^{\prime} 0^{\prime \prime}$	4	
Sarah		4	
	W. side Agricola, N. W. cor. $15^{\prime} 6^{\prime \prime}$ E. of cor. $1^{\prime} 0^{\prime \prime}$ E. side Love Lane, S. E. cor. $24^{\prime} 11^{\prime \prime}$ N. of cor. $21^{\prime} 3^{\prime \prime}$	4 3	
Sp. Garden Rd.	W. side Tower Road, S. W. cor. $35^{\prime} 1^{\prime \prime}$ E. of cor. iron fence $1^{\prime} 0^{\prime \prime}$	344	Low. High.
	W. side Carlton, S. W. cor. house $31^{\prime} 0^{\prime \prime}$ W. of cor. house ' $2^{\prime} 0^{\prime \prime}$	4	"
Young	E. side Dublin, S. E. cor. $21^{\prime} 0^{\prime \prime}$ E. of cor. $]^{\prime} 6^{\prime \prime} \ldots .$.	6	"

Hydrant Valves,

Street.	Location.	Size.	Service.
Cunard	Opp, N. Park, $3^{\prime} 7^{\prime \prime}$ from hydrant	6	High.
Sackville	Cor. Albemarle, $3^{\prime} 10^{\prime \prime}$ from hydrant	6	Low.
Sp. Garden Rd.	Cor. Carlton, $5^{\prime} 0^{\prime \prime}$ from hydrant.	6	High.
Willow	Cor. Robie, $3^{\prime} 4^{\prime \prime}$ from hydrant		

Old Valves Replaced.

Street.	Location.	Size inches.		Service
		Old.	New.	
Brenton	N. side Morris, N. IW. cor. porch $28^{\prime} 0^{\prime \prime}$	3	4	Low.
	S. side Spring Garden Rd., S.E. cor. $19^{\prime} 9^{\prime \prime}$ line street west.	3		"
Carlton	N. side College, N. E. cor, $38^{\prime} z^{\prime \prime} \ldots \ldots \ldots$	3	6	High.
Cunard.......	E. of Agricola, N. side $16^{\prime} 3^{\prime \prime}$ fire hydrant $8^{\prime} 8^{\prime \prime}$	3 3	4	":
Dresden Row.	N. side Morris, S. W. cor. $30^{\prime} 8^{\prime \prime}$ S. side Rottenburg, N. E. cor. $43^{\prime} 9^{\prime \prime}$ S. of E.	3	4	Low.
Maynard	cor. $42^{\prime} 6^{\prime \prime} \cdots$ side $\ldots \ldots \ldots \ldots .$.	3	4	
	S. side Cunard, S. E. cor. $21^{\prime} 10^{\prime \prime}$ N. side Cornwallis, N. W. cor. $30^{\prime} 0^{\prime \prime}$ N. of	3	4	High.
	cor. house $0^{\prime} 3^{\prime \prime} \ldots \ldots \ldots \ldots \ldots \ldots \ldots .$.	3	4	"
Sp. Garden Rd.	S. side opp. Convent, $36^{\prime} 7^{\prime \prime}$ tree W. main gate $35^{\prime} 1^{\prime \prime}$	3	4	H. \& L
	W. side Summer, S. W. cor. fence $32^{\prime} 0^{\prime \prime}$ W. of cor. $\mathrm{l}^{\prime} 0^{\prime \prime}$	3	6	High.
Tower Road	F. side Robie, S. E. cor. $32^{\prime} 9^{\prime \prime} \ldots \ldots \ldots \ldots \ldots$			
Tower Road	N. side Inglis, N. E. cor. $24^{\prime} 0^{\prime \prime}$ N. of cor. $0^{\prime} 6^{\prime \prime}$ S. side Victoria Road, S. E. cor. $19^{\prime} 9^{\prime \prime}$.	3 3	4	Low.
	N. " N. E. cor. house $30^{\prime} 8^{\prime \prime}$ line S. cor. house 	3	4	"

Total Number of Valves.

* 14 three-inch valves replaced by larger valves.
N. B.-All valves open by turning to the right except 2 on the $\mathbf{2 4}^{\prime \prime}$ mains at their junction below Chain Lake gate houses.

Pipe Stock on Hand December 31st. 1904.

No. pieces.	Diameter in inches.	Weight of one in lbs.	Total weight in lbs.		Total Value.	Remarks.
3	27	2870	8610	13	\$ 15067	Class A,T. \& B. 12 ft .
3	27	3206	9618	$1 \frac{3}{4}$	16810	Class B,T. \& B. 12 ft .
1	27	3658	3658	$1 \frac{1}{4}$	6401	Class C, T. \& B. 12 ft .
6	24	2360	15160	$1 \frac{3}{4}$	20213	
4	20	1263	5052	2	11367	
12	15	1200	10800	${ }_{2}{ }^{1}$	24300	
12	12	680	8160	21	18420	
95		500	47500	21	106875	
13	10	550	7150	$2 \frac{1}{4}$	16087	
36	8	386	13896	2	31296	
284	6	380	107920	21	107920	
478	6	280	133840	21	301140	
34	4	204	6936	21	15606	
1	4	156	156	24	351	9 ft . long.
89	3	130	11570	21	26032	9 ft . long.
17	5	222	3774	2	8491	
118		26	3068	24	6903	Stand pipe.
83		12	996	24	2247	Plates.
185		5	1110	$2 \pm$	2497	Caps.
125		18	2250	2	5062	Sleeves for service pipe.
248		4	992	$2 \frac{1}{4}$	2232	Sq. caps for stopcocks.
158		7	316 189	$2 \frac{1}{4}$	$\begin{array}{ll} 7 \\ 4 & 10 \\ 4 \end{array}$	Thimbles for ser. pipes.
27		7	189	$2 \frac{1}{4}$		Sq. caps for main stopcocks.
2029			402721		\$7464 52	

Pipe-Specials.

	Description.	Weight of one in lbs.	5 5 5 5 0.5 0 0		
12.27	Thimbles.	624	7488	24	\$ 16848
227	Bell Mouths	831	1662	$2 \frac{1}{4}$	3739
13.27	Bevel Collers	795	10335	3	31005
127	Plain Special, 2 ft . long, Class	$4 \mathrm{C4}$	404	13	707
127	" 2 " B	460	460		805
127	3 " B	700	700	"	1225
127	4 " B	920	920	"	1610
] 27	5	1248	1248	"	2184
227	5	1144	2288	"	4004
127	3	820	820	"	1435
127	3	930	930	"	1627
127	4	1068	1068	"	1869
127	5 "	1332	1332	"	2331
124	Bevel Collar.	688	688		2064
1224	Thimbles	396	4752	21	10692
124	Cap.	290	290		
624	Split Thimbles....	620	3720	$2 \frac{1}{2}$	9300
124	Y Branch $24^{\prime \prime} \times 24^{\prime \prime}$	2372 230	2372 920	$2{ }^{2}$	5337
$4{ }^{4} 20$	Thimbles	230	920		2070
120	Split Thimbles	453	453	$2 \frac{1}{2}$	1132
315	4-way branches	896	2688	$2 \frac{1}{4}$	6048
315	4 -way branches $15^{\prime \prime} \times 6^{\prime \prime}$	660	1980		4455
115	3-way branch	812	812	"	
215	Y's....	1112	2224	".	5004
415	Thimbles.	234	936	"	2106
115	3 -way branch $15^{\prime \prime} \times 12^{\prime \prime} \times 6^{\prime \prime}$	580	580	"	1330
115	Reducing to $6^{\prime \prime}$	400	400	"	
515	Saddles 15" $\times 6^{\prime \prime}$	122	610	24	1372
915	Split Thimbles	260	2340	$2 \frac{1}{2}$	5850
112	4-way branch....	615	615	$\stackrel{24}{6}$	1384
312	$12^{\prime \prime} \times 9^{\prime \prime}$	500	1500		3375
$4{ }_{4}^{4} 12$	3-way ${ }^{\text {chen }} 12^{\prime \prime} \times 6^{\prime \prime}{ }^{\prime \prime}$	475	1900	"	4277 2358
$\begin{array}{ll}2 & 12 \\ 3 & 12\end{array}$	3-way branch ${ }^{12^{\prime \prime}} \times 1{ }^{\prime \prime} \times 12^{\prime \prime}$	524	1048	"	2358 33
3 12 1 12	$\begin{array}{ll}" & 12^{\prime \prime} \times 9^{\prime \prime} \\ \mathbf{9}^{\prime \prime} \\ 6^{\prime \prime}\end{array}$	494 469	1482 469	"	3334 1055
1 2 12	Reducing to $9^{\prime \prime}$ "...	240	469 480	"	1100
812	${ }^{\text {a }} 6^{\prime \prime}$.	200	1600	"	3600
212	" $6^{\prime \prime}$ with faucets	200	400	"	900

Pipe Specials.-(Continued.)

		Description.				
	12	Thimbles	160	3360	21	\$ 7560
	12	Caps	45	225		506
	12	Saddle $12^{\prime \prime} \times 4^{\prime \prime}$	90	180	"	405
	12	Split Thimbles	222	2886	$2 \frac{1}{2}$	6793
2	9	6 -way branches $9^{\prime \prime} \times 9^{\prime \prime} \times 9^{\prime \prime} \times 3^{\prime \prime}$	450	900	21	2025
6	9	3-way branches $9^{\prime \prime} \times 9^{\prime \prime} 9^{\prime \prime}$	355	2130		4792
10	9	" ${ }^{\text {9" }}$ x $6^{\prime \prime}$	335	3350	"	7537
7	9	Reducing $9^{\prime \prime}$ to $6^{\prime \prime}$	157	1099	"	2473
3	9	Offsets	156	468	"	1093
20	9	Thimbles	112	2240	"	5040
1	9	Saddle $9^{\prime \prime} \times 4^{\prime \prime}$	45	45	"	101
29	9	Split Thimbles	139	2780	$2 \frac{1}{2}$	6950
7	9	Caps	34	238	$2 \frac{1}{4}$	535
26	6	$6^{\prime \prime} \times 6$ 6" 3 -way branches	209	5434	"	12221
11	6	$6^{\prime \prime} \times 4^{\prime \prime}{ }^{\prime \prime}$	200	2200	"	4950
4	6	$6^{\prime \prime} \times 3$ " ${ }^{\prime \prime}$	131	524	"	1179
6	6	Reducing to $4^{\prime \prime}$	114	984	"	1214
6	6	Reducing to $3^{\prime \prime}$	105	630	"	1417
6	6	Thimbles. .	75	450	"	1012
8	6	Offsets	140	1120	"	25.20
4	6	Y branches	209	836	"	1887
20	6	Split Thimbles	92	1840	$2 \frac{1}{2}$	4600
9	6	Caps..	19	171	$2 \frac{1}{4}$	384
2	6	Bends.	140	280		630
21	4	4-way branches	123	2583	"	5809
6	4	3-way branches	114	684	"	1539
4	4	Y branches...	96	384	"	874
7	4	Reducing to $3^{\prime \prime}$	84	588	"	1323
5	4	Offsets	66	330	"	742
27	4	Thimbles	29	783	"	1764
5	4	Bends	83	440	"	9.90
2	4	Split Thimbles	64	128	$2 \frac{1}{2}$	320
6	3	4-way branches	90	540	24	1215
4	3	3 -way branches	60	240	"	540
6	3	Thimbles	29	174	,	391
12	3	Split Thimbles	48	576	$2 \frac{1}{2}$	1440
6	2	4-way branches	30	180	$2 \pm$	405
1.	2	Y branches...	23	23	"	52
3.		Fire hydrants.			66.50	19950
11.		Castings for fire hydrants	418	4598	3	13794
18.		Bases for fire hydrants..	140	2520	3	7560
19.	Jackets for fire hydrants	340	6466	3	19380

Pipe Specials.-(Continued.)

Joint Staves.

			$\begin{aligned} & \frac{5}{0} \\ & . \ddot{0} \\ & 5.0 \\ & 0.0 \end{aligned}$					
5000	2700	1500	800	600	6000	6000	80 1 0 $1 \frac{1}{4}$ 0 1	$\$ 140$ 500 50

Valves.

		Description.				
1	12	Regulating Valve				\$206 66
1	6					10333
4	15	Stop Valves		\$60 00	24000
3	12	."			4000	12000
9	9	" ${ }^{\text {a }}$		2577	23193
46	6	" ${ }^{\text {a }}$			1749	80454
32	4				1500	48000
4	3	" "			12.00	4800
12	1	Service Stopcocks			250	3900
18	$\frac{3}{4}$	" ${ }^{\text {" }}$			200	3600
109	4	" "			160	17540
6	$\frac{1}{2}$	* " Curb				-960
4	15	Gun Metal Spindles..	28	112	60	6720
4	9	"، ${ }^{\text {c }}$	14	56	60	
6	6	"، "،	9	54	60	
8 12	4 3	". "،	6 5	48 60	60 60	
279						\$2583 46

Meters in Stock.

		Descriftion.		-
7	6	Siemen's Meters	\$143 42	\$1003 94
4	4	" ${ }^{\text {" }}$	8675	34700
9	3	" "	6567	59103
2	$1 \frac{1}{2}$	" "	3442	6884
5	17	" ${ }^{\text {" }}$	2916	14580
2	$\frac{3}{4}$	" 4	1550	3100
11	$\frac{1}{2}$	" ${ }^{\prime \prime}$	1450	15950
3	1	" "	2150	6450
20	2	Trident "\%	6260	125200
11	$1 \frac{1}{2}$	" "	3760	41360
25	1	" "	2100	52500
73		"	1197	S79 81
$\stackrel{2}{2}$	-	Crown "	4925	9850
1	8	Hersey "\%	2105	2105
1	$\frac{1}{2}$	Disc	1234	1234
1	$\frac{1}{2}$	Nash	1449	1449
2		Niagara-Buffalo Meters	1319	1319
2	$\frac{5}{\frac{1}{2}}$	Frost Keystone	3142 1200	6284 12
		Keystone		

Miscellaneous.

Recapi ulation.

Description.	No. of Pieces.	No. of Younds.	Value.
Pipes	2029	4027 21	\$7464 52
Specials			339948
Joint Staves	7660		22.20
Valves.	279		258346
Meters......			613883
Miscellaneous			186010
			\$21668 89

Rented Domestic Hydrants.

Street.	Location.
Cedar	N. E. corner Louisburg Street.
Wellington	S. W. corner Lundy Lane.
Duncan..	N side.
Duncan	N. E. corner Harvard Street. S. W. corner Jubilee Road.
Tower Road	S. W. corner Jubilee Road. At Fay's Lane.
Duffus	Corner Gottingen Street.
Oak	S. E. coruer Beech Street.
Sullivan	Opposite May's Brewery.
Atlantic	Corner Brussel Street.
Mott	Corner Seldon Street.
Yale	East end.

Free Pumps Maintained by City.

Hydraulic Hoists in Operation.

Name.	Business.	Size of Service.	How Rated.
Dominion Government	Post Office...	3 inch.	Meter.
Dominion Government	Appraisers' Offiee.		
G. M. Smith	Dry Goods......	4 "	"
Wm. Stairs, Son \& Morrow	Hardware	4 "	
Dillon Bros............ ...	Groceries	3 -	'

Motors.

Name.	Business.	Size of Service.	How Rated.
Brunswick St. Church (Methodist)	Organ	2 inch.	Indicator.

Drinking Fountains.

No.	Location.
1	Market Square. 1 St. Paul's Street, near Barrington Street. Public Gardens

ORNAMENTAL FOUNTAINS.

Public Gardens.
Grand Parade.

Service Pipes Laid.

	Name of Owner or Agent.	Location of Premises.		Purpose for which water is used.
1	H. N. Harvey	S. side Duncan	6873	Dwelling.
2	A. G. Jones .	N. side wharf	6874	
3	S. T. Cragg	S. side Lawrence	6575	Dwelling.
4	Jas. Skerry	E. side Pleasant	6876	
5	N. Jackson	N. side Charles	6577	
6	John McInnis	E. side Young A venue.	6878	
8	B. H. Armstrong	S. side Quinpool Road.	${ }_{6879}^{688}$	Laundry.
8	Annie LeBlanc.	S. side Quinpool Road.	6880	Dwelling.
10	Monastery of G. Shepherd.	N. side Quinpool Road s. side Shirley	68882	Dwelling.
11	d. F. Pelton.	N. side Williams.	6883	
12	A. F. Pelton	N , side Williams.	6884	
13	C. L. Torrey	E. side S. Bland	6885	
14	Jas. Rankine	N side Kaye	6886	
15	W. H. Green	W. side Gottingen	6887	
16	Chas. Evans	N. side North	6888	
17	J. A. Withrow	Henderson \& Potts' field	68891	Slaughter House.
18	R. L. Lessel	IV. side Pleasant	$6590{ }^{\frac{1}{2}}$	Dweiling.
19	A. Whitman \& C	N. side Liverpool wharf	$68911 \frac{1}{4}$	
20	Philip McInnis	W. side Campbell Road.	6892	Dwelling.
21	School Commissioners	S. side Kaye . . .	6893	
22	R. F. Armstrong	W. side Union	6894	Dwelling.
23	Parker \& Son ...	W. side Longard Road.	68951	Planing Mil
24	Neil Ross	S. side Kaye.	${ }_{6}^{6896}$	Dwelling.
25	J. Young	N. side Gerrish	6>97	
26	J. Young	N. side Gerrish	6898 6899	
28	J. Young	N. side Gerrish N. side Gerrish	6899 6900	'
29	M. E. Keefe	N. side Peperell	6901	Stables.
30	H. Green	S. side Peperell	6902	Dwelling.
31	E. Evaus	N. side May	6903	
32	D. Quinn	S. side W . Young	6904	.
33	J. McLellan	E side School	6905	
34	J. McKinlay.	N. side Charles	${ }_{6907}^{6906}$,
35	Elizabeth Ward	E. side Acadia..	${ }_{6908}^{6907}$	
36	Chas. Horton R V. LeMoine	W. side Pleasant S. side Russel	6908 6909	
37 38	R. V. LeMoine Ward Bros.	S. side Russel E. side Agricola	6909 6910	Church \& School. Dwelling.
39	M. Fahie	N side Duncan.	9911	Dwelling \& Shop
40		E. side Hunter	6912	Barn.
41	J. M. Creight	W. side Robie	6913	Dwelling.
42	Wm. Nichols	N. side Shirley	6914	
43	D. M. Thomson	S. side Fenw	6915	

Service Pipes Laid.-(Continued).

	Name of Owner or Agent.	Location of Premises.		Purpose for whic water is used.
44	Thos. Johnson	W. side King's Place	$6916 \frac{1}{2}$	
45	Thos. Deer	S. side W Young.	6917 -	
46	Thos. Doyle	S. side W. Young	6918	"
47	Wm. Davis	S. side W. Young.	6919	
48	Elizabeth Allen	N. side Kaye.	6920 "	
49	Wm. Foster	E. side Windsor	6921 "	
50	A. Westbury	N. side Quinpool Road	6922 "	
51	W. K. Thomson.	N. side Bayers Road.	6923	"
52	Arthur Morton	W. side Robie.... .	6924 "	"
53	J. S. Cashen	S. side Gerrish	6925 :	Shop.
54	Wm. McFatridge	S. side O'Connor's whart	6926 "	Stores.
55	W. H. McArthur.	S. side North	6927 "	Dwelling.
56	J. Gray	N. side Willow	6928 "	
57	J. Irving	W. side Union	6929	4
58	Catherine Garrety	S. side Cedar.	6930	"
59	R. S. Theakston	W. side Henry.	6931	/
60	G. J. Artz....	W. side S. Bland	6932	
61	J M. Bateman	E. side S. Bland	5933	"
62	N. A. Nicholson	S. side Quinpool Rord	6934	
63	L. J. O'Connell	N. side Shirley	6935	،
64	Orphanage.	E. side Veith.	6936	School.
65	J. A. Gray	S. side Wiliams.	6937	Dwelling.
66	John B. Douglas	E. side Birmingham.	6938	
67	St. Patrick's Home.	W. side Mumford Road.	6939	Stables.

Detailed Precipitation for the year 1904.

Day．	January．		February．		March．		April．		May．		June	
	它言	$\begin{aligned} & \dot{\Phi} \\ & \stackrel{\#}{む} \\ & \text { E. } \end{aligned}$	奚：		边官		dis	安				$\stackrel{\text { ® }}{\text { ¢ }}$
1	2.0	． 049	11.5	． 800					2.0	． 096		
2	22.0	1.400	5.0	． 240							5.0	．153
3		．．．	5.0	． 220	6.3	． 310	1.0	． 010			3.5	． 046
					5.0	． 440					1.0	． 033
5		\ldots	6.3 5.8	.260 .200							10.01	1.350
7	4.5	． 060	9.0	． 380	7	． 016	4.2	． 135			10.0	T．
8	． 4	T．	1.0	． 028	12.3	2.060	4.5	． 450			10．8	T．
9	8.4	． 344			1.0	． 010	11.0	． 998				
10	2.0	． 060	． 5	T．	．．．．，	．．．．	16.5	1.038	4.8	． 287		
$\begin{aligned} & 11 \\ & 12 \end{aligned}$			4.0	100	．．．．	．．．．	2.4 1.0	． 170	3.0	T 100		
13				． 100	1.2	T．	1.0 3.0	． 248	6.0	T．		
14	S． 8	1.158			1.0	T						
15	． 5	T．	5.5	． 500	3.0	． 020	． 5	T．				
16			7.8	． 580	7.0	． 120	120	． 660	2.0	． 108	． 6	． 196
17	9.6	． 260	1.0	T．								T．
18										T．	1	T
19 20	． 5	T．	3.0	． 080	12.5	． 00	8.7			1.824		
20 21	1.0	． 010	2.0	250	16.4	T 430	2.1	$.200$	8.0	． 674		
21	5.2 3.5	.070 .160			1.8	T． 030	9.5	． 660	2.0	． 100		
22 23	3.5 12.5	． 160	11.5	1.180	1.5 14.5	.030 1.020			4.0	T．	2.5 2.0	.043 .218
24	9.0	628	7.5	． 410					4.			
25	． 7	＇． 030	5.0	． 100	． 2	． 010					14.5	． 043
26					7.0	． 132			1.0	． 065	2.0	． 382
27	5.0	． 600		\cdots	3.5	． 070					3.0	． 010
28					2.0	． 030						
29 30	3.4 5.0	． 140	． 5	T．		． 100	10.5	． 516			5	． 010
30 31	5.0	． 200	\ldots	\ldots			7.5	． 354	3.2	T． 061	． 8	． 032
Total		6.318		5.328		5.590		5.912		3.315		2668

Total precipitation for the year 57.194 inches．

Detailed Precipitation for the Year 1904．－（Continued）．

Day．	July．		August．		September．		October．		November．		December．	
	害：	$\begin{aligned} & \dot{E} \\ & \stackrel{E}{0} \\ & \stackrel{y}{E} \end{aligned}$	它产	$\begin{aligned} & \dot{\Phi} \\ & \stackrel{\Xi}{E} \\ & \stackrel{~}{E} \end{aligned}$	䇝产	$\begin{aligned} & \dot{\Phi} \\ & \stackrel{\Xi}{0} \\ & \ddot{\sharp} \end{aligned}$	定家		家产		景芸	告
1							1.0	． 022	1	T．	4.0	164
2	6.0	． 312	1.1	． 040	2.0	． 024	1.0	． 020			． 5	T．
3	0.7	T．	3.9	． 353	7.0	． 087						
4					10.0	． 541			1.7	． 053		
5						T．			． 9	T．		
6	． 5	． 001			4.0	． 226	5.5	． 290	7.5	． 536	1.0	． 050
7			． 5	． 010			3.0	． 084	． 5	T．	2.0	． 112
8			2.5	． 208	3.5	． 032		\cdots	1.7	T．	3.8	． 213
9			2.0	． 100			8.5	． 066				．．．．
10							11.8	． 204				020
11	8	． 063	11.5	． 950			17.6	． 494			3.0	020
12	0.1			． 004	5.5	1.204	12.0	． 700	1.5	． 092	10.0	250
14	4.0	． 932	7.0	． 640			7.0	． 40	15.5	． 862	35	． 050
15			12.0	． 760	2	． 016	1.6	． 0111	． 1	T．	．	
16							．．．	．．．．	5.5	． 073		
17	． 7	． 032	12.5	． 530					2.0	． 075		
18									7.0	． 179	12.01	120
19	2.5	.010	.1	T．	2	T．		．．．．	8.0	． 174		
$2)$			2.8	． 047					．．		6.0	． 310
21			9.0	2.440	3.8	． 425						
22					3	.621	3.2	480	． 5	． 028	． 5	T．
23	3.3	． 064	8.0	． 429			6.5	1.910			11.0	． 270
24	6.0	． 909			2.0	． 070			11.5	2.088	2.0	． 010
25					12.2	1.190			1.8	124		．．．．
26			1	T．			.3	T．	． 5	T．		
27					1.5	． 038	3.0	． 273			5.0	． 320
29 29	8	T					．．．．	．．．．．	6.3 4.0	． 128	22.0	
30	． 8	T．			15.0	． 628			13.5	． 595	1.0	． 010
31											3.0	． 100
Total		2.323		6.511 ！		4.502		5.031		5.107		4.589

Detailed Precipitation for the Year 1904.

Day．	Chain Lakes．											
	ड゙	$\stackrel{0}{0}$	苞	范	$\stackrel{\grave{E}}{\Sigma}$	5	交	\sum_{4}^{80}	$\begin{aligned} & \stackrel{\rightharpoonup}{2} \\ & \stackrel{2}{8} \end{aligned}$	¢	安	®®
	$\begin{aligned} & \dot{0} \\ & \text { én } \\ & \hline \end{aligned}$	$\stackrel{\dot{\Phi}}{\stackrel{ \pm}{\Xi}}$	$\stackrel{\text { di }}{\stackrel{y}{\Xi}}$	－	$\xrightarrow{\text { ® }}$	灾	¢	－	突	－	－	
1		． 91			10					． 05		． 13
2		． 21	\cdots	54		． 02	． 52	． 05	． 03			
3		． 35		． 06		． 36	． 05	． 31	． 15			
4	1.25		． 84						． 62		． 07	
6		． 20.				1.11			． 06	． 15		
6						． 15	． 04		． 24	． 19	． 48	． 10
7		． 61				15			． 03			
8		． 14	1.43			． 03				． 09		23
9	． 70	．．．．．	． 36	． 68				20		． 32		
10				1.29	． 39					． 45		
11	． 07			． 16	． 23		． 05	1.00		． 06		
12		． 10						． 05	1.15	． 37		
13			\ldots	41						． 66		
14	1.68		．．．．				． 56	． 09		． 03	1.35	． 40
15								1.22	． 02			．．．．
16		． 72	． 19	． 86		10					． 04	
17	． 96				.05		． 04	． 44			． 13	
18											． 21	
19			． 75	：70	2.43						． 17	1.24
20	，	.33	． 50		． 63							． 32
21	． 10			． 90	13			2.52	． 44		． 02	
22		135				． 06			． 02	． 15	． 04	
23	1.09	． 37	． 92			． 22	． 02	． 49		2.85		
24	． 46						1.92				1.50	． 30
26	． 65	． 79			． 06	． 33			1.41		． 88	．．．．
27	． 12	.11		．	． 06	． 33			． 6	． 31		
28			． 13								10	2.27
29	． 08		． 20	． 35				\cdots				． 05
30	． 16			． 43		． 04	\ldots		． 69		． 76	
31					． 05							
Total	7.32	6.19	5.32	6.38	4.07	2.60	3.20	637	4.89	5.68	5.65	5.04

[^0]: All old pipe taken up was 3 inch.

