

P.O. Box 1749 Halifax, Nova Scotia B3J 3A5 Canada

Item No. Dartmouth Lakes Advisory Board February 1, 2012

TO:

Chair and Members of the Dartmouth Lakes Advisory Board

SUBMITTED BY:

Councillor Jackie Barkhouse, Chair, Harbour East Community Council

DATE:

January 18, 2012

SUBJECT:

Russell Lake Water Quality

ORIGIN

Harbour East Community Council January 17, 2012 meeting.

RECOMMENDATION

Harbour East Community Council recommends that the Dartmouth Lakes Advisory Board, pursuant to the December 19, 2011 staff report, prepare a written report of recommended policy alternatives for the consideration of Harbour East Community Council to enhance the preservation of water quality, particularly at Russell Lake.

BACKGROUND/DISCUSSION

The Harbour East Community Council considered the staff report dated December 19, 2012 (attached) respecting Russell Lake Water Quality during their January 17, 2012 meeting.

Further background is outlined in the attached staff report.

BUDGET IMPLICATIONS

Budget Implications are outlined in the attached staff report dated December 19, 2011.

FINANCIAL MANAGEMENT POLICIES/BUSINESS PLAN

This report complies with the Municipality's Multi-Year Financial Strategy, the approved Operating, Project and Reserve budgets, policies and procedures regarding withdrawals from the utilization of Project and Operating reserves, as well as any relevant legislation.

COMMUNITY ENGAGEMENT

Following the completion of the requested report of recommended policy alternatives from the Dartmouth Lakes Advisory Board to Harbour East Community Council, staff have been directed to hold a community consultation entitled "Options for the Protection of Russell Lake". The attached staff report outlines further details of the community consultation. Following the community consultation, Harbour East Community Council has directed staff to prepare a recommendation report to Community Council reviewing all the presented options and alternatives.

The Harbour East Community Council is comprised of six members of Regional Council, duly elected to represent Districts 4, 5, 6, 7, 8, and 9. Meetings are open to the public, unless otherwise stated, and include a Public Participation portion at the end of each meeting for members of the public to address Community Council with any comments or concerns. Agendas, minutes and reports for Community Council meetings are a part of the public record and posted online.

ALTERNATIVES

None identified.

ATTACHMENTS

Staff Report dated December 19, 2011

A copy of this report can be obtained online at http://www.halifax.ca/council/agendasc/cagenda.html then choose the appropriate meeting date, or by contacting the Office of the Municipal Clerk at 490-4210, or Fax 490-4208.

Report Prepared by:

Jennifer Weagle, Legislative Assistant, Municipal Clerks Office, 490-6517

P.O. Box 1749 Halifax, Nova Scotia B3J 3A5 Canada

AMMundal

Harbour East Community Council January 12, 2012

^	7	•	`	
		ı	,	•

Chair and Members of Harbour East Community Council

SUBMITTED BY:

Phillip Townsend, Director, Planning & Infrastructure

DATE:

December 19, 2011

SUBJECT:

Russell Lake Water Quality

ORIGIN

- Dartmouth Municipal Planning Strategy
- 2011 Water Sampling Results from Stantec for Clayton Developments

RECOMMENDATION

It is recommended that Harbour East Community Council:

- 1. Forward a copy of this report to the Dartmouth Lakes Advisory Board and request a written report of recommended policy alternatives for the consideration of HECC to enhance the preservation of water quality, particularly at Russell Lake;
- 2. Following receipt of the referenced DLAB report, direct staff to hold a community consultation, entitled "Options for the Protection of Russell Lake", to review:
 - a. The recommended policy alternatives presented by DLAB;
 - b. Additional community or other stakeholder options or alternatives;
 - c. The historical and relevant data related to water quality;
- 3. Direct staff to prepare a recommendation report to HECC reviewing all the presented options and alternatives.

BACKGROUND

The Dartmouth Municipal Planning Strategy directs with policy ML-31:

Pursuant to policy ML-30, in the event the critical water quality threshold levels for Morris or Russell Lakes are reached, it shall be the intention of Council to immediately undertake a review of existing plan policies contained herein and determine an appropriate course of action respecting watershed management and future land use development in the area. Critical water quality thresholds shall be made available to the public.

As per Attachment One, sampling during 2011 yielded results that exceeded the agreed TP threshold of 15 mg/L. Summarily, the 2011 results were: Marc (31); June (21); August (19); November (17).

DISCUSSION

Without pre-supposing the impacts of the increased phosphorus levels in Russell Lake, according to Environment Canada the levels of nutrients and their expected effects in lakes and rivers can be categorized and described as their trophic status. Below is a description of the various trophic states:

oligotrophic	0.004- 0.010	Very Low nutrients and plant growth, high water clarity	
Mesotrophic	0.010- 0.020	Moderate levels of nutrients and plant growth, reduced water clarity	
Mesoeutrophic	0.020- 0.035	Moderate levels of nutrients and plant growth, reduced water clarity	
Eutrophic	0.035- 0.100	High levels of nutrients and plant growth, low water clarity	
Hypereutrophic	>0.100	Very high levels of nutrients and plant growth, very limited water clarity	

A visual of the impacts of a eutrophic system is as follows, and the reasons that policy directs staff to review policy should the threshold level be exceeded:

In healthy ecosystems, nutrient inputs, specifically nitrogen and phosphorus (P), occur at a rate that stimulates a level of macroalgal and phytoplankton (chlorophyll a) growth in balance with grazer biota. A low level of chlorophyll a in the water column helps keep water clarity high , allowing light to penetrate deep enough to reach submerged aquatic vegetation (L). Low levels of phytoplankton and macroalgae result in dissolved oxygen (O2) levels most suitable for healthy fish and shellfish os that humans can enjoy the benefits that a coastal environment provides.

In a eutrophic ecosystem, increased sediment and nutrient loads from farming development, water treatment plants, and industry in incombination with atmospheric nitrogen, help trigger both macroalgae and phytoplankton (chlorophyll a blooms, exceeding the capacity of grazer control. These blooms can result in decreased water clarity, decreased light penetration, decreased dissolved oxygen, loss of submerged aquatic vegetation, nuisance/toxic algal blooms and the contamination or die off of fish and shellfish

The historical	data	for	Russell	Lake	is	as	follows:	

	INLAKE	NORTH	SOUTH		
Sample Date	STATION	INLET	INLET	OUTLET	
2011 Annual Average	0.022				
09-Nov-11	0.017	0.027	0.030	0.013	
10-Aug-11	0.019	0.050	0.052	0.016	
23-Jun-11	0.021	0.027	0.070	0.017	
27-Mar-11	0.031	0.015	0.031	0.023	
2010 Annual Average	0.006				
03-Nov-10	0.005	0.006	0.045	0.007	
10-Aug-10	0.007	0.014	0.047	0.007	
23-Jun-10	0.008	0.008	0.046	0.014	
18-Mar-10	0.002	0.007	0.026	0.006	
2009 Annual Average	0.012	0.025	0.060	0.013	
29-Oct-09	0.003	0.007	0.027	0.006	
12-Aug-09	0.020	0.010	0.071	0.017	
03-Jun-09	0.012	0.011	0.110	0.011	
13-Apr-09	0.013	0.073	0.030	0.017	
2008 Annual Average	0.009	0.067	0.027	0.011	
01-Oct-08					
01-Aug-08	0.007	0.006	0.028	0.008	
01-Jun-08	0.012	0.015	0.036	0.015	
01-Mar-08	0.009	0.180	0.018	0.009	
2007 Annual Average	0.012	0.023	0.026	0.028	
01-Oct-07	0.014	0.012	0.044	0.012	
01-Aug-07	0.014	0.023	0.014	0.014	
01-Jun-07	0.007	0.056	0.010	0.073	
01-Apr-07	0.012	0.000	0.034	0.014	
01-Oct-06	0.011	0.010	0.053	0.010	
01/09/2006 (additional)		-9.86	0.110		HECC established TP threshold
01-Aug-06	0.020	0.180	0.080	< 0.020	August 3, 2006
01-Jun-06	0.008	0.009	0.086	0.004	
01-Mar-06	0.015	0.008	0.031	0.010	_
01-Nov-05	0.025		0.088	0.027	
01-Aug-05	0.012	0.022	0.043	0.016	
01-Jun-05	0.007		0.046	0.010	4
01-Apr-05	0.000	0.029	0.042	0.007]

The 2011 results and related reports compel staff and the community to further examine the results, compare them with other trends and information, examine opportunities for water resource protection, and report back to Community Council with recommendations.

The recommended method will:

- 1. Ensure that subject matter expertise from DLAB is engaged;
- 2. The community is involved with reviewing options and alternatives; and
- 3. Council is provided a menu of options for water resource stewardship and a further examination of the impacts.

It should also be noted, as per the historical results, that TP levels have fluctuated up and down over time; so continued testing in 2012 may demonstrate that levels are within the threshold without any policy revisions or actions. As DLAB and the community are engaged, future results regarding Russell Lake will be of great interest.

BUDGET IMPLICATIONS

There are no impacts to the 2011/2012 Operating or Capital Budget. Costs for the referenced consultations can be captured within existing operating budgets. Costs for potential policy alternatives will be provided upon identification of those.

FINANCIAL MANAGEMENT POLICIES / BUSINESS PLAN

This report complies with the Municipality's Multi-Year Financial Strategy, the approved Operating, Project and Reserve budgets, policies and procedures regarding withdrawals from the utilization of Project and Operating reserves, as well as any relevant legislation.

COMMUNITY ENGAGEMENT

This process will result in Community Engagement related to water quality and protection of.

ALTERNATIVES

None identified.

ATTACHMENTS

Attachment One: Stantec Report

A copy of this report can be obtained online at http://www.halifax.ca/commcoun/cc.html then choose the appropriate Community Council and meeting date, or by contacting the Office of the Municipal Clerk at 490-4210, or Fax 490-4208.

Report Prepared by:

Richard MacLellan, Manager, Energy and Environment, 490-6056

Stantec Consulting Ltd. 102 - 40 Highfield Park Drive Dartmouth NS B3A 0A3 Tel: (902) 468-7777 Fax: (902) 468-9009

December 9, 2010 File: SD19184/121510291

Clayton Developments Limited 255 Lacewood Drive, Suite 100C Halifax, NS B3M 4G2

Attention:

Mike Hanusiak, Sr. Vice President, General Manager

Dear Mr. Hanusiak:

Reference: Water Quality Monitoring Results for Russell Lake - November 2011 Sampling Event

To monitor the effects of development, water quality monitoring has been undertaken on a seasonal basis since April of 2005 at four stations in Russell Lake (Figure A1 in Attachment). Monitoring events include one spring, two summers and one fall sampling event each year. Water samples are not collected in winter. Sampling results have been provided in previous letter reports to you, with a summary of the sampling up to August 10, 2011 presented in the report dated August 30, 2011. The present report builds on the results to date while focusing on the monitoring results for the November 9, 2011 fall sampling event.

The weather was calm and cloudy with an air temperature of 4°C at the time of sampling, and cloudy for four days prior to the sampling event on November 9, 2011. Winds blew generally from the west and were below 30 km/hr for the four days leading up to the day of sample collection, and less than 10 km/hr the day of sample collection.

Sampling was conducted between 11:15 a.m. and 12:35 p.m. on November 9, 2010. At the time of sample collection, the water at the North Inlet station was observed to be opaque and brown. The grating within the culvert at this station was obstructed by garbage but no smell was noted. Water flowing from the South Inlet was clear and the flow was moderate. No algae were observed and the aquatic vegetation was limited to attached macrophytes. No sedimentation was observed in the pools. No birds were observed in the wetlands near the South Inlet. At the In-Lake station, approximately ten gulls were observed about 30 m south of the sampling location and ducks were observed along the northern shore. Algal growth was present on the dock. The water at the In-Lake station was brown and turbid. At the Outlet station of Russell Lake the water was running clear and no odour was detected. Filamentous algae covered the substrate at this station. The aquatic vegetation had died off for the year by the date of sampling.

Tables A1 - A4 (in Attachment) present the water quality data for the period from April 2005 to November 2011 at the four Russell Lake monitoring stations: In-Lake, Outlet, South Inlet and North Inlet sampling stations. The trends for some of the key parameters (total suspended solids (TSS), pH, conductivity, sodium and chloride, total phosphorus (TP), chlorophyll *a* and faecal coliforms) are presented graphically in Figures A2 to A8 (in Attachment).

December 9, 2011 Mike Hanusiak, Sr. Vice President, General Manager Page 2 of 7

Reference:

Water Quality Monitoring Results for Russell Lake - November 2011 Sampling Event

Total Suspended Solids

TSS concentrations (Figure A2 in Attachment) were low with a concentration of 3 mg/L at the In-Lake station, 2 mg/L at the North Inlet and Outlet stations, and 1 mg/L at the South Inlet. These results are consistent with previous fall results. The TSS measured in the duplicate field sample for the North Inlet station was 3 mg/L, which is similar to the result for the field sample (2 mg/L).

pН

Measurements of pH collected in the field since April 2005 (Figure A3 in Attachment) indicate that the waters of Russell Lake are generally neutral. The pH readings in early November 2011 were slightly acidic at pH 5.7 for both the In-Lake and South inlet stations and which were below the CCME freshwater aquatic guideline of pH 6.5. The historic range for these two stations in the fall is slightly higher with a pH from 6.8 to 7.7 for the In-Lake station and a pH from 6.7 to 7.7 for the South Inlet station. The North Inlet station had a higher pH of 8.1 than what would normally be encountered in the fall and which would range from pH 7.5 to 7.9. The Outlet station measured pH 6.8 and within the historic range of pH 6.8 to 7.8.

Salt Concentrations

Russell Lake has higher levels of salt concentrations due to the level of development within the watershed. This is typical of any urban lake when compared to a similar lake in a less developed watershed. Conductivity increases with salt concentrations and elevated levels are typically exhibited during spring melt conditions. Concentrations tend to be higher at the North Inlet where the road network and associated drainage is concentrated and lower at the South Inlet which is less developed.

The November 2011 conductivity, chloride (CI) ion, and sodium (Na) concentrations were generally within the range of past fall sampling results. As is typical, the concentrations at the North Inlet were higher when compared to the other three stations (Tables A1 to A4; Figures A4 and A5 in Attachment).

The fall 2005 to 2010 values for the North Inlet station ranged from 430 to 790 μ S/cm for conductivity, from 49 to 110 mg/L for sodium, and from 87 to 190 mg/L for chloride. In early November 2011, the concentrations measured at the North Inlet station for conductivity, sodium and chloride were 1000 μ S/cm, 132 mg/L and 250 mg/L, respectively. The 2011 results at this station were all slightly higher than the range of previous results.

The values measured in the fall of 2005 to 2010 at the South Inlet station ranged from 120 to 210 μ S/cm for conductivity, with results for sodium ranging from 13 to 23 mg/L and chloride ranging from 20 to 37 mg/L. The early November 2011 values at this station were within that range with conductivity measuring at 150 μ S/cm, sodium at 16 mg/L and chloride at 27 mg/L.

The fall values for the In-Lake sampling station for 2005 to 2010 ranged from 310 to 700 μ S/cm for conductivity, from 45 mg/L to 110 mg/L for sodium and from 72 to 190 mg/L for chloride. In early November 2011 the values at this station were within that range with conductivity measuring at 390 μ S/cm, sodium at 57 mg/L and chloride at 94 mg/L.

Similar values are typically observed between the Outlet station and the In-Lake station, as supported by the range of fall values at the Outlet station for conductivity (300 to 700 μ S/cm), sodium (44 to 110 mg/L) and chloride (72 to 190 mg/L) for the fall 2005 to 2010sampling events. In early November 2011 at the Outlet

December 9, 2011 Mike Hanusiak, Sr. Vice President, General Manager Page 3 of 7

Reference:

Water Quality Monitoring Results for Russell Lake - November 2011 Sampling Event

station, the results were within this range with conductivity measured at 390 μ S/cm, sodium at 58 mg/L and chloride at 93 mg/L.

Nutrient Enrichment

The chlorophyll a (Chl a) concentration (based on the acidification technique) at the In-Lake station for November 2011 was $18.67~\mu g/L$. This concentration is higher than results for the previous fall events. The fall results for the previous sampling years ranged from $1.48~\mu g/L$ in 2008 to $16.2~\mu g/L$ in 2005 (Figure A7 in Attachment). Chl a concentrations were measured at $6.58~\mu g/L$, $7.11~\mu g/L$, $1.48~\mu g/L$, $4.78~\mu g/L$, and $3.96~\mu g/L$ in 2006, 2007, 2008, 2009, and 2010 respectively. Total phosphorus (TP) concentrations at the In-Lake site have fluctuated over the fall sampling periods, ranging from a low of $2~\mu g/L$ in 2010 to a high of $25~\mu g/L$ in November of 2005 (Figure A6 in Attachment). The November 2011 result was $17~\mu g/L$ which is within the range of previous values but above the HRM threshold value of $15~\mu g/L$ for Russell Lake. It is noted that the threshold value is intended for comparison to sample results at the In-Lake station only.

The Chl a concentration at the Outlet station measured 16.61 ug/L in November 2011. The 2011 result is within the range of the 2005 to 2010 values which ranged from 1.04 μ g/L in October 2008 to 17.7 μ g/L in November 2005 but higher than the trend since 2006 which has been less than 5.46 μ g/L for the fall results. The November 2011 TP concentration at the Outlet station measured 13 μ g/L which is within the range of previous fall results (Table A2 in Attachment) and ranged from a low of 6 μ g/L in 2009 to a high of 27 μ g/L in 2005.

The ChI a concentration for the fall sampling event at the South Inlet station was 0.13 μ g/L. This result is lower than the range observed for all previous fall values of between 0.15 μ g/L in 2007 to 1.08 μ g/L in 2006. The TP concentration at the South Inlet station in November 2011 measured 31 μ g/L and which is in the range of all past fall results that ranged from 26 μ g/L in 2010 to 88 μ g/L in 2006.

At 1.61 μ g/L, the ChI a concentration at the North Inlet station in November 2011 was within the range of previous fall results where the fall 2007, 2006, 2009, 2010 and 2008 values of 6.60 μ g/L, 1.74 μ g/L 1.44 μ g/L, 1.04 μ g/L, and 0.17 μ g/L were obtained. ChI a concentrations were not measured in the fall of 2005. The TP concentration for the North Inlet station measured 27 μ g/L which is the highest fall value obtained since 2006 (TP concentrations were not measured in the fall of 2005). The next highest TP value of 12 μ g/L in the fall was measured in 2007.

Total Phosphorus Discussion

Total phosphorus (TP) concentrations at the In-Lake site have fluctuated over the fall sampling periods, ranging from a low of 2 μ g/L in 2010 to a high of 25 μ g/L in November of 2005 (Figure A6 in Attachment). The November 2011 result was 17 μ g/L which is within the range of previous values but above the HRM threshold value of 15 μ g/L for Russell Lake. It is noted that the threshold value is intended for comparison to sample results at the In-Lake station only. TP results for the fall 2008 sampling event were invalid.

In 2011, the In-Lake TP concentrations were above threshold values for each of the four sampling events. This led to further investigations to attempt to correlate the In-Lake TP concentrations to the North or South Inlet stations. Annual mean concentrations were calculated for the In-Lake and inlet stations to aid in determining any annual trends (Table 1). The 2011 mean for the In-Lake station was the highest observed since the beginning of monitoring at 22 ug/L. The mean TP concentrations for 2011 for the North and South inlet stations were observed to be within ranges previous measured and just above the 2005 to 2011 means of 48 ug/L and 33 ug/L, respectively.

December 9, 2011 Mike Hanusiak, Sr. Vice President, General Manager Page 4 of 7

Reference:

Water Quality Monitoring Results for Russell Lake - November 2011 Sampling Event

Table 1 Annual mean TP concentrations for the In-Lake and Inlet stations (2005-2011)

Year	Annual In-Lake TP Mean	Annual N-Inlet TP Mean	
2005	12	55	26
2006	14	77	51
2007	12	27	23
2008	9	32	67
2009	12	60	25
2010	6	41	9
2011	22	46	30
2005 - 2011	12	48	33

The Pearson correlation coefficient statistic was used on individual values and not the mean values to determine which of the inlet stations most strongly correlated to the In-Lake TP concentrations (Table 2). The Pearson correlation coefficient ranges from -1 to 1. A value of 1 implies that a linear equation describes the relationship between *Inlet* and *In-Lake concentrations* perfectly, with all data points lying on a line for which *In-Lake concentrations* increase as *Inlet concentrations* increase. A value of -1 implies that all data points lie on a line for which *In-Lake concentrations* decrease as *Inlet concentrations* increase. A value of 0 implies that there is no linear correlation between the variables. This exercise in correlation was completed for the North and South Inlet stations for all years of monitoring and subsequently for their sum as total contribution of TP to Russel Lake. The correlation coefficients for comparison of Inlet stations with the In-Lake station TP concentrations were very low.

Table 2 Pearson correlation coefficients between the In-Lake and inlet stations for TP concentrations

Inlet	Pearson Correlation (2005-2011)
North Inlet TP Concentration	0.0159
South Inlet TP Concentration	0.0190
Sum of Inlet TP Concentrations	0.0215

A method of visual correlation of the Inlet stations and In-Lake station concentrations illustrate that high concentrations of TP in the Inlet stations are not strongly associated with elevated levels in the In-Lake station. Figures 1, 2 and 3 below illustrate the data with a trend line through the data illustrating the linear regression equation and the R-squared coefficient (R^2). The R-squared coefficient represents how the data fits the linear regression equation. A value of 1 implies that the data completely fits the linear regression equation with a value of 0 implying that the data points do not fit the equation. The R-squared coefficients are low, varying from 0.0245 to 0.0363. Based on the results of the Pearson correlation and linear regression, the elevated TP concentrations observed for the In-Lake station cannot be correlated to the TP concentrations observed coming from the North or South Inlet stations. This suggests that there are other sources of TP within Russell Lake.

December 9, 2011 Mike Hanusiak, Sr. Vice President, General Manager Page 5 of 7

Reference:

Water Quality Monitoring Results for Russell Lake - November 2011 Sampling Event

Figure 1 Correlation of North Inlet TP Concentrations to In-Lake TP Concentrations

Figure 2 Correlation of South Inlet TP Concentrations to In-Lake TP Concentrations

December 9, 2011 Mike Hanusiak, Sr. Vice President, General Manager Page 6 of 7

Reference:

Water Quality Monitoring Results for Russell Lake - November 2011 Sampling Event

Figure 3 Correlation of the sum of TP Concentrations from both Inlet Stations to the In-Lake TP Concentrations

Bacterial Contamination

Bacterial contamination in Russell Lake is measured by sampling and testing for the presence of faecal coliforms in the water. In addition to faecal coliform analysis conducted by the lab, analysis of *Escherichia coli* (*E. coli*) has been added. *E coli* are a type of faecal coliform but may be considered a more specific indicator of bacteria found in the intestines of warm blooded animals and humans and a strong indication of recent sewage or animal waste contamination, whereas some faecal bacteria may originate from non-faecal sources. *E coli* counts measured 4 Colony Forming Unit (CFU)/100 mL for the In-Lake and Outlet stations, and 5 CFU/100mL for the South Inlet station (Figure A8 in Attachment). At the North Inlet station and in the duplicate field sample, *E coli* counts were 14 CFU/100 mL and 11 CFU/100 mL, respectively.

Samples analyzed for faecal coliforms at the four stations during early November 2011 measured below the detection limit (<1 Most Probable Number (MPN)/100 mL) at the In-Lake station and Outlet station, 11 MPN/100 mL at the South Inlet, 15 MPN/100 mL at the North Inlet and 25 MPN/100 mL in the duplicate sample. The geometric mean of the results for faecal coliform analysis of 4 MPN/100 mL indicates that faecal coliform levels were below the CCME Recreational Guideline (200 MPN/100 mL) for freshwater at the time of sample collection. The geometric mean for the *E. coli* results is 7 CFU/100 mL, which is also below the recreational guideline value of 200 *E. coli* per 100 mL.

Sample results at all stations for faecal coliform were within the range of previous fall results. Historical fall results at the South Inlet station range from <1 MPN/100 ML (2005 and 2006) to 280 MPN/100 mL in 2010. Results for 2007 and 2009 were 6 MPN/100 mL and 2 MPN/100 mL, respectively. At the Outlet station, previous fall results range from <1 MPN/100 mL (2005 and 2006) to 640 MPN/100 mL (2007). The In-Lake station faecal coliform value was <1 MPN/100 mL, within the range of past results from <1 MPN/100 mL (2005 and 2006) to 140 MPN/100 mL (2007). Faecal coliform results at the North Inlet station are typically higher than the other stations. The faecal coliform value for the 2011 fall sample (15 MPN/100 mL) was within the range of the fall sampling events for this station, which ranged in the past from <1 MPN/100 mL (2005) to 710 MPN/100 mL (2007).

December 9, 2011 Mike Hanusiak, Sr. Vice President, General Manager Page 7 of 7

Reference:

Water Quality Monitoring Results for Russell Lake - November 2011 Sampling Event

Conclusions

The results of the November 2011 sampling event indicate that total phosphorus level at the In-Lake station was 17 μ g/L, which is higher than previous fall sampling results with the exception of 2005 when the total phosphorus result was 25 μ g/L, and is slightly above the HRM threshold value of 15 μ g/L. Based on the results of the Pearson correlation and linear regression, the elevated TP concentrations observed in the In-Lake Stations are not correlated to TP concentrations observed in the North or South Inlet stations. ChI a concentrations were also lower or within the range for the 2011 fall event and compared to previous years, with the exception of the In-Lake station where the concentration was slightly higher than the range at 18.67 μ g/L. It is possible that the higher TP concentration observed for the In-Lake station is attributable to the higher ChI a concentration and *in-situ* algal biomass in Russell Lake.

The November 2011 conductivity, sodium (Na) and chloride (CI) concentrations were within the range of previous sampling events for all sites. The values at the North Inlet station have tended toward higher concentrations since 2007. Higher levels of salts would be anticipated as development progresses in and around the Lake. TSS measurements were low and pH measurements indicate that the lake water is generally neutral, but which had a basic pH of 8.1 for the North Inlet station and an acidic pH of 5.7 for both the In-Lake and South Inlet stations for the fall sampling event. The latter two stations are below the CCME freshwater aquatic pH guideline of 6.5. The geometric means of all *E. coli* and faecal coliform results were below the CCME recreational guideline of 200 MPN/100mL. The overall results for the various water quality parameters measured suggest generally consistent water quality in Russell Lake for the fall 2011 sampling event compared to previous years, except for possibly pH, total phosphorous, and Chl a.

Sincerely,

STANTEC CONSULTING LTD

ORIGINAL SIGNED BY

Kelley Fraser, MES, EPt Project Manager Tel: (902) 468-7777 kelley fraser@stantec.com

cc: Cameron Deacoff, Halifax Regional Municipality

Attachments: Figures A1- A8 and Tables A1- A4

j \lcd1213-f02\profit_centers\1215\active\121510xxx\121510735\reporting\monitoring\reporting\2011_fall_nov 9\ltr_rpt_monitoring_nov2011-20111209 doc

Figure A2. Total Suspended Solids at four sites in Russell Lake from April 2005 to November 2011

Figure A3, pH at four sites in Russell Lake from April 2005 to November 2011

Figure A4. Conductivity at four sites in Russell Lake from April 2005 to November 2011

Figure A5. Sodium and chloride concentrations at four sites in Russell Lake from April 2005 to November 2011

*gaps are shown where data are unavailable

Figure A6. Total phosphorus concentrations at four sites in Russell Lake from April 2005 to November 2011

Figure A7. Chlorophyll a at four sites in Russell Lake from April 2005 to November 2011

Figure A8, Faecal coliforms at four sites in Russell Lake from April 2005 to November 2011

TABLE A. Confeed Water Custing Data for Bussell ake in Jake (2005-2011)	Dusliby Data for Bus	ecoli Lake	n-1 ake (2005-	2011)											-											2000		Γ
								-							in-Lake											,,,,,,		Γ
	=	WE W			-			2000		-	7007	, a			2008			5002	50	_		2010					-	T
Analyte	Units	FWAL	+	2005	1	- 1	, free	2005	boo	Anı	In In	Aug	Oct Mar	unf Jan	Ι.	oct	Apr	Jun	Aug	Oct	Mar	Jun	Aug	Nov	Mar	Jun	Aug	Nov
			Apr Jun	n Aug	NON		-	+				ŀ	╀	-	-	-					_	-					4	٦
General Chemistry						+	+	+		1	1	11	+	+	\downarrow	+	27	8	36	8	g	83	36	36	32	-	+	2
Total Alkalinity (asCaCO,)	mg/L		4	-	17	ξ	+	52	92	2 5		7 5	+	+	1	ł	270	250	220	52	170	180	8	150	240	\dashv	130	2
Chloride	mg/L		150 87	7 99	72	5		4	73	0/1	2	1	+	+	1	+	¥	9	77	22	4	8	10	15	14		-	=
Colour	τα		12 12	3	18	2	+	+	=	5	B .	0 8	71 5	2 5	2 2	, 5	F	F.	35	8	z	69	59	58	69	60	-	47
Hardness (as CaCO,)	mg/L		48 34	4	37	┥	+	4	+	8	2	+	+	+	Ŧ	ľ	2 2	900	\$0.05	80.05	0.11	20.05	\$0.05	<0.05	90'0		<0.05	58
Naturale + Natrite (as N)	тву	Ľ	<0.05 <0.05	05 <0.05	-	4	\dashv	4	+	6 8	8	88	9009	+	+	+	,			40.05			\$0.05	\$0.05				
Mérate (as N)	-	13000	50.0> 50.0>	300>	_	-	+	4	+	& 8	†			1	1	-				1000			<0.01	10.0>			_	
Minte (as N)	L	9	<0.01 <0.0>	<0.01 <0.01	-	+	1	4	+	+		+	+	20.00	90,00	9000	. 00	50.05	\$0.05	90.05	\$0.05	\$0.05	¢0.05	50.05	<0.05	<0.05 0	0.12	50 05
Ammonia (as N)		> 61	<0.05 <0.0	<0.05 <0.05	<0.05	-	4	8 8 8	<0.05	800	8	899	900	50.05	+	+	╀				-	ŀ	-			Н		T
Total Koldahi Narogen	mgilL			0.4	0.4	0.3	+	+	-	-			+	1	20	43	13	-	5	4.5	2.9	2.4	1.3	3.3	2.7	Н	42	ψ,
Total Organic Carbon	mgv		19 3	36 3	44	<0.5	+	4	3.6	2.7		+	+	+	+	Ŧ,	100	1000	50.03	1005	100>	0.05	10.0	<0.01	-0.01	c0.01 <0		100
Ortho Phosphate (as P)	mg/L	Ľ	<0.01	<0.01 <0.01	-0.01	C0.0>	10.0>	4	+	00	500	+	+	2001	+	+	:	:	100	-	5	_	8	2	31	_	19	17
Total Phosphones	705	-	2.5	7 12	25	15	5 8	20	=	12	,-	14	7	17	+		1						-			L	_	
Disabled Photohorus	mad	Ľ	\$00.0	100		9000	ję.			4		+	+	+	+	+	. ;	;		3,5	7.3	7.5	7.5	7.5	7.4	-	-	7.6
7	L	6.5.9	Ļ	7.0 7.1	7.3	7.0	0 6.8	5 7.4	7.5	-	7.5	7,6	+	+	+	+		,	2	2 :	2 0	2 :	2.4	2.4	61	L	L	52
Donntein Silver (or SiO.)	÷	H	-	0.7 2.1	3.5	2.5	5 1.3	3 2.5	<0.5	-	0.7	2.3	0.6	8 0.6	26	+	77	90	77	;	9	7	9	2	22	-	L	13
Coletate	mu4		16 1	12 13	13	15	5 15		12	-	16	16	+	+	+	+	q	8	87		:	200	-	1.5	2.8	-	L	1.2
Terhida	ZZV	L	-	06 08	2	13	3 1.1	-	3.6	+	50	90	+	+	+	+	7	900	-	9 5	- 6	3 2	15.3	285	930	-	H	8
Conductivity	u5/cm	-	-	360 390	310	350	50 420		1	8	282	470	+	+	+	+	3 3	200		902		85	139	308	456	L		207
TDS (calculated)	mgy	L	269 1	176 206	159	192	7	4	\dashv	+	265	245	+	+	+	+	2 1	5	2 2	1	ş	25	98	38	31	L	L	35
Bicarbonate (as CaCO ₁)	тдЛ		20 17	17.1 21.3	17	5	+	+	28	+	g),	12	DE .	+	+	+	: :	3 7	v	ī	V	V	F	۲	۲		-	ū
Carbonate (as CaCO,)	mg/L		5	Į,	٢	V	+	+	+	+	į	- -	+	+	╀	+	12	2	R	18	92	23	77	20	24	-	$\frac{1}{2}$	9
Calcium	mg/L	1	4	4	12	+	+	+	7	+	2 ;	- ;	2 .	3.5	1,	2 2	24	22	23	~	13	2.6	2.4	2.2	2.3	2.2	2.0	6
Magnesium	mg/L	1	+	+	16	+	+	+	+	+	1,5		+	ł	+	ł	26	52	25	2.3	2.0	2.2	2.1	2.3	2	-	+	20
Petassum	mgiL		+	+	15	+	+	+	+	7, 5	27	12	+	+	╀	\vdash	180	150	130	88	83	107	69	25	144	+	+	25
Sodium	mg/L	-	92	52 64	46	1	7 .	я ·	+	+	3 -	+	+	╁	ŀ	\vdash	┞	-	m	-	-		2	-	n	+	+	
"Total Suspended Solids	mg/L	1	-	+	+	1		, ;	+	9 00 0	107	57 £	7 11	-	H	1.48	643	1.17	26.60	4.76	1.99	95.0	2.99	3.96	10.62	-	811	1867
Chlorophy? a	ng/L	1	-	1.60 2.80	16-20		1	+	8	╁	╬	1	ŀ	L	ŀ	ŀ												T
Field Measurements				+	+	+	1	+	1	-		-	3.	-	15	7	13	9	1.6	3.75	3.5	4	2.3	2.6	1.7	1.6	1.5	4
Secchi disc depth	ε	1	4	-	+	+	7	+	2 3	+	,	2	+	╀	80	┞	5.5	11.3	8.6	10.9	13.4	8.1	7.6	13.1	13.1	7.4	5.9	10.5
Desolved Oxygen	mgil		10.5	89 73	-		۲	+	+	+	+	2	╀	+	+	\vdash	H	08	2.2	2.0	7.8	6.8	6.9	7.5	7.4	7.4	8.2	5.7
¥	sgun		H	7.3 7.6	-	4	۳	+	+	99	,	200	000		+		╀	27.8	631		109	699	635	570	515	631	929	387
Conductivity	m2/cm	_	300	_	129	4	ř	4	+	+	+	4/2	+	1	+	+	+	16.0	22.2	8.3	5.2	20.6	22.6	8.7	3.4	18.3	20.7	80
Temperature (field)	ာ့		10.4	19.6 23.4	7.2	_	=	19.8 21.1	4	4	20.4	23.3	╬	╬	+	-	╬							_				П
Bacteriological		_			_		-				1	\dagger			+	+					-	-	-	3	V	E	67	7
*E Coli	CFU/100ml					-	-		-			+	+	+	+		150	-	3200	32		091	50	25	2	3	240	_
"Faocal Cofform	MPN 100 mil			1	-	_		5 1300	-1 C	-	120	300	140	-	0	-	3	The second			,					77747		
Child Continuedor & continuedor	1.40	-																										

FWML. Freshwater Aquate Life

"Beautic below detection limits (DL) abnorm as 1.

Cache with transferable programs to include no sample collected

Cache with state includation as among collected

Cache with state includation resumple collected

April 2005 result for TP is failteed because result was below detection limit (DL) and shown as \$2.5 (1/2 DL). The DL is now 2 upl.

TABLE A2 Surface Water Quality Data for Russell Lake, Outlet (2005-2011)	Duality Data to	r Russell La	ake, Outlet	(2005-2011)												Order												
	-														ľ	1200			9000				2010		-		2011	
Analyte	Units	COME		2005	Sı			2006		4		2007		-	1	8002		100	1	Ann	100	Mar		Aug	Nov	Mar	Jun Aug	Nov
		FWAL	Apr	nnr	Aug	Nov	Mar	- La	Aug	oct ,	Apr Jc	Jun Aug	g Oct	War	en C	Aug		į				l	ł	-	┞	ŀ	ŀ	L
General Chemistry	T	Î		l	-			L		Н			4	4		;	ļ	-	92	35	7	P	2	\vdash	H	-	H	
Total Abaliaby (asCaCO.)	mo/L	Ī	5	17	23	-12	16	11		\dashv	22	26 21	27 30	E .	52	17	3	, ,	360	220	150	170	180	170	150	240	170 130	63
Chlorido	mar		150	88	100	72	93	66	-	+	-	+	+	+	200	25		¥	9	91	92	16	7	L		Ц	_	4
Colour	TCU	Ī	=	12	12	18	12	14	7	=	4	+	+	+	2 0	2 2	, ,	y	879	99	51	95	t	_	H		_	-
COCO and searchest	you	Ī	63	6.94	42	37		43	-	4	-	+	+	+	2	200	1	3	20.02	50.05	40.05	200	<0.05	-	L	_	0.05 <0.0	50.05
Marsia Merio (as M)	- Long	T	<0.05	<0.05	50.0>	×0.05	\$0.05	<0.05	-	4	4	0.05	-	+	S)	50.05	EOTO.	,	200		50.05			┞	40.05		_	
Marcia (as Mi		13000	\$0.05	<0.05	<0.05	<0.05	<0.05	<0.05	> 50'0>		0.05			•	-	-	-				1000		-	-0.01	10.01	ļ.,		_
Alexander (and the	1	9	10.05	10.05	10,03	<0.01	<0.01	+0.01	×0.01	-0.01	-	4	4	+	+	,			900	30.07	500	90.05	50.05	H	-	0.05	e0.05 0.09	50'0>
Ammonia (22 M)	and a	E S	\$0.05	<0.05	90'0	40.05	<0.05	<0.05	< 0.05	-0.05	\dashv	-0.05 -0.0	<0.05 <0.05	40.05	40.05	40.05	e,	50,02	60.0	200	+	-			┞	L	L	
Total Kalidahi Merooon	Jour			5.0	5,0	6,0	0.1	5.4		,	\dashv	+	+	+	• :	1			-	1.5	1.6	2.8	2	3.7	3.6	-	3.7 4.2	10.01
Total Orangia Carbon	- Pour		2.1	-	3.6	6.3	3.6	3.3	-	+	-	+	-	+	3.3	37.5	97	1000		1000	10.05	40.01	<0.01	10.0>	-0.01	F	10.0> 10.01	
Ortho Phosphate (as P)	ma/L		10.0	+0.01	10:0>	<0.01	<0.01	10.0>	+	+	-	-0.01	10.0>	40.01	40,01	0.00	1000	12.5	11	12	9	9	12	,	2	23	Н	\dashv
Total Dhoraham	gon.		-	10	91	7.7	ō	ų	<20	ō	4	+	+	+	2	,							-	-	-			,
The state of the s	you.	Ī	0.005		1.0	-	0,007	,			-	4	-	+	+				1.0	1.5	7.8	13	7.3	7.7	7.5	L	H	
animated Linearing	Hote	6.5.9.0	6.7	6.9	7.7	2.3	6.9	6.7	7.4	7.5	-	-	+	+	+	2			2,0	2,0	1	1	50	2.4	2.4	-	-	H
	1		7.	-	2.5	3.5	2	1.3	2,4	2	_	4	-	+	+	977	**		3		1 5	:	a.	1	15		_	_
Control page of the control	900	Ī	و	121	12	16	71	41	-	12	_	-	-	4	+	7		g :		30	1	:	-	90	9.0	L	H	L
ordinare.			1	2.4	0.7	1.8	12	-	6,3	2,8	_	+	-	4	4	7	2	,			1	1	75.0	979	580	-	-	_
urbiday			San	G57	60,	300	360	410	320	330			_	-	1	780	8	1000	2/2		200	3	315	310	308	ŀ	H	L
Conductivity	march		1	1	214	162	197	503	178	121	L	Щ		_	-	435	372	206	567		8	975	3	+	1	+	H	L
TDS (calculated)	mgh		į	1	12	12	92	1.2	52	26	-		27 30		4	27	g	27	62	8	4 3	3	5 7	ī	2 5	1	-	-
Bicarbonale (as Cacos)		Ī	ī	16.8	ī	v	ī	ī	17	ī	_	_	-	+	-	ī	1	7			,	,	-	-	er.	\vdash	H	ŀ
Carbonate (as CaCOs)	Table 1	T	-	12	41	1.2	7	2	4	7.	20	31	17 15	16	22	2	18	:		3		-	1		12	23	2.0 2	1.9
Cakeum	J. Com	ľ		1,5	1.7	1.6	1.7	1.7	12	1.8	-	1	1.8	+	+	22	-	7	27	1	3 .	200	1	2.0	2.2	L	-	-
The state of the s	0000	ſ	1.6	<u></u>	1.2	1.5	1.5	1,4	1.5	1.7	4	-	2 23	+	+	\$		5	2,5	02.5	##	80	11.2	58	93	_	-	
Sodium	mail		2.6	57	59	97	63	64	25	4	+	+	+	+	+	141	-	-		-	-	-	-	-	-	2	2 3	7
"Total Suspended Solids	Lon		Ŀ	2.4	3.6	-1	5	2	-1	+	+	+	+	+	+	-		, ,	107	11.60	4.72	2.92	1,00	1,35	3,18	19,56	1.49 7.22	+
Chlorophyll a	ከፀረ					17,70		2,19	2.46	5.46	7.85	567	1,08 5,16	3	OF 1		5					Ī			H			
Field Measurements											1		-				-	ŀ		Į.	-		-			,		
Secchi disc depth	ε			ŀ	·			-	+		+	+	+	+	1	7.6	10.9	96	6'9	18	10.6	1.2	5.0	5.6	13.4	-	\dashv	+
Dissolved Oxygen	mgil		10.2	7.4	5.5	10.8		11.3	8.9	11,9	14.8	8,8	1	2 3	1	7,6	7.8	7.4	7.2	7,6	7.8	7.5	7.7	7.4	7.2	7.7	7.6 7.	7,6 6.8
I	units		6'9	6.8	6,8	7.2		7.2	7.1	4.7	+	+	+	+	+	1651	600	1023	278	834		265	707	633	17.5		4	-
Conductivity	m2/cm		635	345	201	136		389	399	344	+	+	+	+	+	::	18	6.2	19.6	23.5	8.8	1:5	20.5	22.8	7.9	-	-	-
Temperature (field)	Ų		12.2	22.5	25.5	7.6		21.3	23.1	9.1	-	-	+	+	ł								-		_			-
Bacteriological										+	+	+		+								c	l.	53	10	-	28 5	54
E.Colr	CFU/190ml								-		1	+	+	+	150	01.0	,	GP1	24	8100	160	-	35	900	200	4		Q
"Faccal Coldorm	MPN/100 ml		-	8	10			170	2700	-	_	200	3000 640	2	,													
FWAL - Freshvaler Aquatic Life	Life																											

COMAL STORE NAY INST ALM 11 31 31 31 32 13 12 11 31 31 32 13 13 12 17 31 31 32 13 13 13 12 17 21 21 21 31 <	2006											•						•	
Mark Payal Apar	$\frac{1}{2}$	L		2007	-		2008			•	2003			2010	- 1	1		-	-
No. No.		+	Anr		001	Mar	Jun Aug	ng Oct	1 Apr	unr	Aug	Oct	Mar	Jun	Aug	Nov	Mar	Jun Aug	3
10 10 10 11 11 11 11 11	T		-	╂		-	-	-	H	-						_	-	-	-
Mark 11 31 33 71 21 13 13 13 13 13 13 1	appe	+	+	+	J.	+	1	+	ŀ	Ļ	25	24	25	4	95	27		_	-
Tright T	+	2	6 5	5 :	64 6	2 2	2 2	34	200	49	39	g	29	15	49	37	7.1	43 28	-
Tricy 24		4	+	+		╀	\downarrow	+	+	1	150	25	26	47	87	53			_
mm, mm, mm, mm, mm, mm, mm, mm, mm, mm	-	4	+	+	-	+	+	╀	+	ļ	3	35	42	47	7	43			
mark 1,000 e456 e505 0.00 0.00 e405	+	+	+	+	87	+	+	+	+	ŧ,	+	50.05	0 11	90.0	0.1	50,05	L	50.0> 50.05	5
No. No.	<0.05 0.12	4	+	+	60.0	+	+	+	+	╀	+	30.05			5	<0.05	H	H	-
No. No.	-0.05	4	. 60'		1	-		1	1		-	1007			10.0>	10.0	-		ŀ
	-0.01	_	0.01			4	4	+	4	4	+	0.0		200	200	3000	20.05	2005	50.05
Part	50.0>	Ĺ	0.05 <0.05	5 <0.05	<0.05	<0.05	<0.05 0.0	0.06 <0.05	05 <0.05	50.05 5	0.03	cu.no	40,05	60.03	200	7		ł	+
may		L	H					-	-	4	+			1	-		-	+	+
may	11 11	H	-	L	5.2	\vdash		11 11	-	4	4	7.8	5.5	8.1	2	*	77	+	+
mgh		-	ŀ	0.07	0,03	0,01	0.03 0.0	0.03 0.0	22 0.01	10.01	0.03	-0,01	0.01	0.03	0.02	600	0.01	0.02	2
10, 10,	+	ŀ	\vdash	ŀ	44	L	L	9,	30	_		27	45	47	46	26	30	+	+
Mark 6.540 6.8 70 -6.1 -7.0 6.6 -7.0 -6.6 -7.0 -6.6 -7.0 -6.6 -7.0 -6.6 -7.0 -6.6 -7.0 -6.6 -7.0 -6.6 -7.0 -6.6 -7.0 -6.6 -7.0 -6.6 -7.0 -7.	+	╀	t	+		L	H									,	-	+	+
United 6.5-6.0	+	+	+	1	7.2	ļ	ŀ	L	-	L	L	7.4	7.3	7.6	7.6	7.4	7.4	4	1
mogh	+	+	+	+		ł	1	ŀ	┞	ŀ	L	5.5	5,6	8'9	7.2	6.4	4.8	-	
NYTY NY NY NY NY NY NY N	+	+	+	+	3	4	+	+	H	╀	1	12	12	6	\$	18	7	_	~
NEUT 0.3 0.2 -0.1 0.7 1.2 0.6	-	+	+	+	7	+	+	+	ł	╀	╀	1.5	=	1.7	4.1	1.5	6.0	_	2
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	-	2.8	0.5	9.1	7 !	500	1	170	190	240	190	140	270	190	260	210	320	220 1	150
model	_	+	+	4	021	+	+	+	+	╀	+	86	167	101	139	119	165	L	_
1 10 10 10 10 10 10 10	113	-	+	4	29	+	+	+	+	+	╀	1	25	çş	5	27	25	H	_
mark	<1 35	+	1	-	25	+	+	+	+	+	+		1	2	ī		ī	┞	-
1	<1 <1	-	+	4	V	+	+	+	+	+	+		;	:	14.1	=	5	L	_
15 15 15 15 15 15 15 15	14 14	-	-	9.3	7.9	+	+	+	+	+	+	,		,		2,6	2.7	-	25
mode 1 0.5 0.5 1 1 0.5	3 3.4	_	_	_	2	4	4	+	+	+	+	1				3	-	\vdash	-
Mark	2 2	L	-	_	1,5	_	4	-	+	4	+		1		2	1		ł	ļ.
Mode	71 25	┞	-	14	13	_	_	_		-	-	9	SE	19	92	*	4	+	+
	+	╀	ŀ	-	-	L	H	_		 1	1	-1	2	4	-	-	-	+	1
1974 10.4 0.10 0.20 1.2.3 1.2.5	1			2 0 16	0.35	1.54	0.56 0.	0.70	0.48 0.69	1,67	277	0.29	1.37	5.05	0.64	0.13	1.80	0.42	
m myt 104 93 74 130 . 103 103 miles 105 105 105 105 105 105 105 105 105 105	/17	200.1	1	ł	1	-	ł	ŀ	┞	┞	ŀ								_
m 104 9.3 7.4 13.0 10.3 mg/L 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3				+	1	+	-	+		1				-					_
mg/L 104 9.3 7.4 13.0 . 10.3			4	+		+	+	+	+	ł	+	10.7	15.6	ç	5.6	15.1	13.7	_	Li.
units 6.5 6.9 7.6 7.3 6.1 1.24 105 185 78 94	6.8	12.3	-	+	12.5	21.4	+	+	+	+	+	1.	;	ì	7.1	42	7.8	ŀ	
c/rm 124 105 185 78 54	6.7 7.2	7.2	5,4 7.0	7.7	6.7	6.5	5	*		2 8	1	-	000	183	270	205	316	214	145.0
	161	142	-	-	7,4	187	+	+	+	+	+		,		16.6	7,5		ŀ	_
, racks "C 9g 15,3 23.5 5.7 14,7	16.9	6.6	-	-	5.1	5:0	-	╁	┩	+	╂	,					-	┞	ŀ
		-		_	_		-	-		1		+		I	-	<u> </u>	1	$\frac{1}{1}$	5
logical		-		_				_			-		2		200	-	-		200
K-M100m	500	-	3	200	9	2	2	150	0	~	2200	7	-	1	1100	260	2	1	3
"Faecal Colform MPN/100 ml 1 14 to 1 1																			
FWAL - Freshwater Aquatic Lide																			
Results below detection limits (DL) shown as 2.5 [1/2 DL)																			
Results below defection limits shown as 1																			

11005-2005; John Hitch and I have a second and the Confirm Control and the North Land (2005-2011)	Ourline Data for	a Classes G	ke North John (2)	305-2011)																					1000			Γ
LABOR AN SULING	Towns Common														North Infe	je,								-				Γ
	_	CCME						2000		-	200	2007			2008				2009			2010	- 1			5		T,
Analyte	al Land	FWAL	-	2005	-	Nov	Mar	Jun Aug	Set 1	Apr	June	Aug	öct	Mar	Jun	Aug	Oct	unr	Aug	ö	Mar	Jun	Aug	Nov	Mar	Jun Aug	D NOV	2
			di	+	+	╁	ł	╀	╀	ŀ			-				-		_						1	+	+	T.
General Chemistry				-	+		+	\downarrow	+	+	+	88	f.	64	\vdash	╀	H	┞	┞	L	07	110	56	77	63	7	77	88
Total Alkalinty (asCaCO,)	mg/L		28	5	8	-	+	200		+	2000	5	150	1500	350	230 9	91 270	310	260	-	640	330	270	190	263	-	+	8
Chloride	mg/L	****	110	=	0		290	+	+	+	1	3	:	-	+	+	-	ŀ	ŀ	H	=	22	38	33	13	-	+	
Colour	JOT	Ĩ	28	-	17	1	7		+	+	+	2	2 5	- 1	ł	+	-	+	ŀ	┞	200	170	160	120	220	-	-	٥
Hardness (as CaCO ₃)	mg/L		29	66	93	-	+	4	+	+	+	107	27	3 5	+	ł	-	H	\vdash	H	0.33	0.26	0.24	0.36	0.47		0.38 0	S
Netato + Nerte (as N)	may		0.65		0.22		-	4	+	0.32	0.24	0.25	023	0.62	+	+	+	+	╀	0.23	,		0.23	96.0				
National Cost No.	mol.	13000	-				0.4	<0.05 0.07	7 1.27	4			1	1	1	1		+		100			100	<0.01	-		_	
Natio (34 K)	may	8	10.0>		-	-	<0.01	_	\dashv	-	4		1	+	+	+	100	. 8	200	+	89.65	8	0.15	20.0	40.05	900	0.1	0.12
Ammonia (as M	mark	19	<0.05	9	<0.05	H	0.14	<0.05 <0.05	30.05	+	\$ 0.05	\$0.05	90.05	0.12	88	anno an	850	+	+	+						_		П
Total Kelidahi Nerogea	700			0	0.3		90	0.4		-	4		1	+	+	+	+	+	\dagger	+	100	3	,	4.5	3.1	-	_	to
Total Original Carbon	, SE	ľ	6.5		33	-	2	4.6 5.8	Н	_	-	3.7	7.3	2	3.6	6.2	2	à	9 9	, ,		200	1007	1002	40 D3	-		6
0.00	2000		200	ô	10.03	-	c0.01	<0.01 -0.01	1 <0.01	_	0.03	10.0	<0.01	*0 D2	4	+	CO.03	+	+	+	,		:	-	35	27	8	22
מוחוס ווייים ווייים ווייים			26	ľ	22		89	180	\vdash	_	_	23	12	160	5	9	2	=	2	1	-	٥	,	 		ł	\vdash	Γ.
lotal Prosphorus		Ī	-	1	+		-	l	_	5.3	ŀ	-		_		-	4	4	+	+				†	1	-	ŀ	T
Dissayed Phosphorus	mgv			ľ	1	+	+	73 78	37.6	H	H	7.9	6.2	9.2	8.0	_	-	7.7	2,5	+	7.8	7.9	80	8)	6,	+	+	, ,
¥	Units	0.5-2.0				-	+	ŀ	ŀ	┞	L	67	42	2.6	22			\dashv	4	4	4.5	5.5	5.9	ő	200	+	+	Ţ,
Reactive Silica (as SiO-)	J66		2	<u> </u>		<u> </u>	+	\mid	+	H	S	g	23	-97	22	_	_	-	4	4	×0.01	12	13	67	Q.	+	+	,
Suphate	шдуг	T	0,7		;;			2.0	ł	ł	ŀ	1.2	5.5	170	9.0		_	4	-	-	1.8	6:0	2.7	2	7	+	+	Ţ
Turbidity	Ę		C)	1	7		1	Cas	430	╀	H	720	670	5100	1400	F	_	_	-	-	2200	1400	1100	790	2100	+	+	3 :
Conductivity	m2/cm		490	"	270	+	+	200	+	ł	H	343	364	2740	693	L	_	L	_		1170		574	426	1080	+	+	
TDS (calculated)	mg/L		292	"	7 .	+	+	+	+	5 5	5	5	23	40	29	19	70 4	47 80	16	11	70	104	98	92	62	92	26	26
Bicarbonate (as CaCO ₃)	mg/L		28		8		+	$\frac{1}{1}$	+	+	+	Į.	ī	1	v	ŀ	ŀ	-	-	-	٧	V	⊽	₹	v	+	+	- T
Carbonate (as CaCO,)	mg/L	Ī	ī	-	-	+	+	+	+	+	5	6	cş.	78	52	43	40	35	L	H	69	57	54	70	25	-	31	6
Calcium	тау		21	,	31		+	+	8 5	+	+		1.5	8.4	5.6	H	L	-	H	ŀ	7.7	7	5.8	4.2	86	+	+	
Magnesium	mg/L		2.3		3.7		+	+	+	+	+	;	8,7	6.8	26	-	H	H	-	-	4.0	3.4	3.7	3.1	3.6	-	2.9	=
Polassium	тол		23		77	+	+	17	+	+	+	8	8	Onto	210	150	L	-	<u> </u>	110	350	174	148	109	330	162	+	32
Sodam	mg/L		75	1	28		-	+	+	+	+			330	-	ŀ		_	2	H	-	7		-	2	-	+	2
"Total Suspended Solids	mgA		7	-	0	1	=	$\frac{1}{1}$	+	+	, 50	1	000	33	20	0 21	110	103 0 67	77 0.27	1.44	0.63	0.75	0.35	104	0.94	0 21	180	9
Chkrophyll a	под			2	2 50			- C-	1	8	+			-	-		_	_	-	-							-	T
Field Measurements				-	-		1											-		-								7
Secchi disc depth	E				-			4	+	+	+	+		- 5	500	+	+	ł	\vdash	╀		8.8	7.9	142	139	5.4	-	110
Discolved Occord	mail			_	2.0	_		_	-	+	1	+	555	200	201	+	+	+	ļ	7.8	ļ	7.5	7.3	7.3	7.6	_	_	-
	Har.		L	Ĺ	7.5			7.5 7.7	7 7.3	3 7.0	7.7	7.9	7.0	20	0.0	2	9		2	+	2000	euc.	1110	780	21.5	1142	969	666
Line	20,31				70			542 754	L	_	_	_	444	3036	2540	+	+	+	+	+	5032	100	2 000	:	2.5	H	H	82
Conductivey	00000		1	[7.5			ŀ	-	L	-	_	9.0	1.9	14.4	18.3	_	6.4 1.4	14.6	1.5	ē.	0.01	200	*	-	╀	┞	ľ
Lemperature (tided)					+			┡	┞										-	-					+	+	-	T:
Bacteriological			1	+					1	-					-	-	L		_	_	45	-	23	-	-	+	800	
E.Cell	CFU/100ml		1	+	+	+	+	35	4300	9	2	10000	710	22	22	630	5	6400 2	20 1700	51	-	65	1100	160	13	82	200	١
**Faecal Coliform	MPN/100 ml]				-	-	4	-	3			- Constitution of the Cons																
	,,,																											

FWA.L. Fromweitr Aquatic Life

"feestilk; below detection limits (DL, a Shiborna as 2.5 unit, (17.0 DL)

"Result below detection limits (DL), a shiborna as 2.5 unit, (17.0 DL)

"Result below detection limits (DL), a brisma as 1.

"Result below detection limits (DL), a brisma as 1.

"Result in the state of the state