HALIFAX WATER: INTEGRATED RESOURCE PLAN ## Technical Conference #3 14th December, 2011 - Notes - 1. This document includes a progression in logic and methodology for the development of the preliminary alternative Resource Plans. - 2. The High Level Plan (sheets 2 and 3) outlines the strategic components (drivers, goals, objectives) and the tactical components (programs, projects, metrics). - 3. The Objectives Details (sheets 4, 5, and 6) further defines the objectives by providing a description of the objective, expected qualitative benefits, and variations to the objective. - 4. The Resource Plans Summary (sheet 7) illustrates the objectives, the variations and provides an initial look at possible alternative Resource Plans for consideration. - 5. P1 to P7 (sheets 8 through 14) show the various preliminary alternative Resource Plans and the variations associated with the "theme". This provides a different way of illustrating the various plans. - 6. With 8 objectives having variations, there are a vast number of plan combinations (> 50) that can be considered. The intention is to identify the most meaningful alternative Resource Plans and bring those forward for detailed economic analysis. - 7. As well, there are some variations in technology that may be applicable to certain objectives such as the overflow abatement program. For example, we may consider at source controls, end of pipe controls, or a combination of both to manage the overflow abatement program. This will allow for further refinement of alternative Resource Plans such that if we choose Plan 4, the technology variations for one of the objectives may result in Plan 4.1, Plan 4.2, Plan 4.3 for future analysis. Given the time available to complete the Integrated Resource Plan, we need to keep the total number of alternative Resource Plans to a practical limit. ## Further information: www.halifaxwater.ca Links – bottom left hand corner Integrated Resource Plan Technical Conference 3, December 14, 2011 IRP Resource Plans Matrix | | Strate | pir | | | Tactical | | |------------------------------------|---|-----|--|---|---|---| | Deisson | Goal | - | jective | Programs | Projects | Program Metrics / LOS | | Driver
Regulatory
Compliance | Achieve compliance with all regulatory requirements | | Meet current Nova Scotia
Environment (NSE) WWTF
permit to operate requirements | Continue program for meeting current WWTF compliance | Continue implementation of
specific WWTF compliance
projects based on study area
watershed priorities | Current permit to operate effluent requirements | | | | 2 | Meet current NSE WSP permit to operate requirements | Continue program needed for meeting WSP compliance requirements | Continue implementation of specific WSP compliance projects | Current permit to operate treated water requirements | | | | 3 | Meet current overflow compliance requirements | Expand overflow monitoring | Implement monitoring at additional sites | Number of monitored active overflows | | | | | | Provide floatables management for overflows Ensure no dry weather | Implement screening at specific sites Eliminate all dry weather | Number of of active overflows
with screening
Number of sites with dry | | | | | | overflows | overflows (e.g. Lyle Street weir) | weather overflows | | | | 4 | | Ensure no increase in overflows
due to growth without an
approved management plan | Develop and implement an
overflow management plan
based on study area watershed
priorities | Number of overflows at active
overflow sites compared to
baseline overflow values | | | | | | Balance wastewater flows
among facilities to
accommodate optimal use of
available capacity | Implement specific flow diversion projects | Overall facility capacity utilization | | | | | Meet future WWTF effluent requirements | Provide secondary level
wastewater treatment for
harbour facilities | Upgrade Halifax WWTF to secondary treatment | Future effluent requirements consistent with secondary treatment | | | | | | | Upgrade Dartmouth WWTF to secondary treatment | Future effluent requirements consistent with secondary treatment | | | | | | | Upgrade Herring Cove WWTF to secondary treatment | Future effluent requirements consistent with secondary treatment | | | | | | Provide enhanced nutrient
removal for WWTFs discharging
to sensitive or limited receiving
waters | Implement specific nitrogen (N)
& phosphorus (P) reduction
projects based on study area
watershed priorities | Future effluent requirements consistent with enhanced nutrient removal | | | | | | Provide effluent requirements for "toxics" | Implement specific "toxics" management projects | Future effluent requirements consistent with removal of "toxics" | | | | 5 | Meet future NSE/Health Canada
drinking water quality
requirements | Meet expected drinking water quality requirements | Upgrade WSPs and well systems
to meet expected drinking
water quality requirements | Enhanced drinking water quality
requirements | | | | 6 | Meet future regulations for overflow volume and frequency | Develop wet weather flow
management program including
CSO, SSO, and WWTF by-pass
reduction based on study area
watershed priorities | Implement specific capacity increase/storage/flow reduction (I/I and sewer separation) projects | - WWTF bypass frequency in wet weather | | | | | | | Implement specific deep storm
installation projects to facilitate
I/I reduction program
Implement real time controls to
allow for flow optimization | - SSO frequency e.g. frequency
of occurrence based on 1:5 year
design storm | | | | 7 | Meet future stormwater quality compliance requirements | Develop stormwater quality management program | Implement specific retrofit and
new development stormwater
quality projects | Stormwater treatment requirements based on technology (e.g. BMPs and/or water quality) | | al Calcillation of the | Strate | gir | | Tactical | | | | |------------------------|--|-----------|---|--|---|--|--| | Driver | Goal | Objective | | Programs | | Program Metrics / LOS | | | Driver
Accet | Maintain infrastructure | | Implement optimal level of | | | Asset renewal rate based on | | | Renewal | serviceability | | asset reinvestment (all asset classes) | | Cucii dasev eldas | asset risk profile | | | | Maintain adequate system security | ; [| Enhance reliability of critical assets | security program | mile remains and a pro- | Reduction in transmission main failure risk | | | | | | | including needs for enhancements to firm capacity | specific overflow locations as
well as redundancy/protection
projects | Reduction in system failure risk | | | | | 10 | Ensure exisiting storm system is
adequately sized for minor
storm conveyance | Identify possible storm capacity constraints and locations | Conduct storm system capacity assessments | Number storm system capacity upgrade projects identified | | | | | 11 | Adapt to future climate change | Adapt to changes in storm flooding particularly with respect to climate change | Implement specific storm
system renewal or upgrade
projects | System resilience measured by
ability to mitigate future flood
risk | | | | Assess and implement energy efficiency initiatives | 12 | Reduce energy consumption,
operating costs, and reduce
greenhouse gas (GHG)
contributions | Develop pumping station
elimination program | Implement specific pumping
station
elimination/consolidation
projects | Number of stations eliminated
or consolidated | | | | | | | Develop pumping station optimization program (looking at energy optimization, optimizing the number of pumping stations, and rightsizing forcemains for optimal performance) | Implement pumping station optimization projects including variable frequency drive (VFD) implementation | Energy savings realized by pumping station optimization | | | | | | | Identify feasible heat/energy recovery programs | Implement feasible specific
heat/energy recovery projects | Return on investment | | | | | | | Identify feasibility for wind generation program Develop water and wastewater | Implement feasible specific wind
generation sites/projects
Implement treatment facility
energy optimization projects | Return on investment Return on investment | | | | | | | treatment facility energy optimization program | including optimization of aeration systems | | | | | | | | Identify potential biogas implementations | Implement feasible specific biogas projects | Return on investment | | | | | | | Develop energy efficiency
design elements for use in
pumping station, wastewater
treatment facility, pressure | Implement enhanced pumping
station design standards
including application of variable
frequency drives (VFDs) | Return on investment based on
energy savings | | | | | | | reducing valve, and water
supply plant designs that
consider whole life cost analysis | Implement enhanced pressure
reducing valve (PRV) design
standards | Return on investment based on energy savings | | | | | | | | Implement enhanced
wastewater treatment facility
design standards incluiding high
efficiency aeration systems | Return on investment based on
energy savings | | | | | | | | implement enhanced water supply plant design standards | Return on investment based on energy savings | | | Growth | Support planned growth within the HRM communities | 13 | Provide regional water,
wastewater, and stormwater
infrastructure needed to
support planned growth | Determine regional water,
wastewater and stormwater
infrastructure expansion | Implement the specific growth related projects | Timely expansion to permit continued growth. | | | | | | | Secure long term water supply for the airport lands | Implement water supply project
for airport lands | Adequate supply to meet future needs Timely flow management to | | | | | 14 | Manage flow capacity allocations | Divert wastewater flows to accommodate optimal management of capacity | Implement specific flow diversion projects | permit continued approved growth | | | | | | | Continue water and wastewater demand reduction practices | Implement enhanced water conservation and I/I reduction programs | Reduction in required infrastructure capacity due to water conservation and I/I reduction programs | |