Soil & Water Conservation Society of Metro Halifax (SWCSMH)

310-4 Lakefront Road, Dartmouth, NS, Canada B2Y 3C4 Email: limnes@chebucto.ns.ca Tel: (902) 463-7777

Master Homepage: http://lakes.chebucto.org

Ref.: wrcc_eutrophication2005October25 Total: 5 pages

To: Chair and members, Western Region Community Council, HRM

From: S. M. Mandaville Post-Grad Dip., Professional Lake Manage.

Chairman and Scientific Director

Date: October 25, 2005

Subject: Phosphorus- Canadian Water Quality Guidelines at a Glance;

Caution re shallow and/or dystrophic lakes in Nova Scotia; and in celebration of the life of Dr. Richard Vollenweider (all URLs in

our web space are case-sensitive)

[I] Enclosed is a 2-page document from Environment Canada which greatly simplifies the various aspects. It also instructs on how to set the trigger ranges based on background, i.e., the values in similar lakes with little or no development, within their watersheds!

Kindly refer to our web page on the federal guidelines, http://lakes.chebucto.org/DATA/PARAMETERS/TP/popup.html and it has both the 6-page formal CCME fact sheet as well as the entire 133-page detailed synopses of Environment Canada (2004) in PDF format. The web page also has a 4-minute mp3 sound file of Dr. Vollenweider urging the use of the OECD (Organization for Economic Co-Operation and Development) probability distribution diagrams to take into account the uncertainties (see also §VI at the end here).

[II] We have completed such a scientific effort covering approx. one thousand (1,000) lakes and ponds all across HRM. As time allows and when applicable, we are incorporating related select results of our ongoing and extensive bio-monitoring into the aforesaid predictive models as well, a methodology recommended in leading scientific and/or federal handbooks from Canada and the USA!

[III] We had submitted a handful of such models when opportunity arose; to the Regional Council (e.g., Morris/Russell Lakes watershed for the public hearing d/March 22, 2005), to the Harbour East Community Council (for the public hearing relating to Russell Lake d/May 25, 2005), and to the HRM's Planning & Development Dept. (e.g., the Papermill/Kearney Lakes d/January 25, 2004).

Phosphorus- Canadian Water Quality Guidelines at a Glance; Caution re shallow and/or dystrophic lakes in Nova Scotia; and in celebration of the life of Dr. Richard Vollenweider (all URLs in our web space are case-sensitive)

October 25, 2005 Page 2 (of 5)

[IV] Some municipalities in North America are placing varied controls on even <u>end-of-pipe stormwater discharges</u> in areas serviced with separate storm sewers, and on the lot densities (i.e., number of lots within 300-metres of lakes) in areas serviced by septic systems!

[V] Caution re shallow and/or dystrophic lakes in Nova Scotia:

<u>Shallow lakes</u> are defined as lakes where the euphotic zone extends over the bottom. Simply, the euphotic zone is defined as the depth at which the light intensity of the photosynthetically active spectrum (400-700 nm) equals 1% of the subsurface light intensity.

`Trophy' of a lake refers to the rate at which organic matter is supplied by or to the lake per unit time. Trophy, then, is an expression of the combined effects of organic matter to the lake!

As developed originally and as largely used today, the trophic concept (e.g., TP, Cha, SD, and TN) refers to the pelagic-zone-planktonic portion (i.e., open-water) of the lake ecosystem. The littoral flora and its often dominating supply of autochthonous organic matter to the system, was, and usually still is, ignored thus arriving at erroneous conclusions of trophic status.

The productivity of most <u>dystrophic lakes</u> classically has been described as low. However, more detailed examinations indicate the contrary. Phytoplankton biomass (chlorophyll) is significantly higher in coloured ("brown-water") lakes than in clear lakes. Annual productivity of the epilimnetic bacterioplankton was also found to be much higher (four times) in dystrophic lakes than in clear lakes. Anoxic hypolimnia are frequent in dystrophic lakes (see http://lakes.chebucto.org/shallow.html).

[VI] Dr. Richard Vollenweider was the scientist who headed the 14-year, 18-country peer-consensus research of the OECD which served as the prime basis of the CCME's phosphorus guidelines! We have herewith also included a photograph of him who was the first of only four scientists in Canada to be recipient of the top international award in limnology since 1942, the Naumann-Thienemann Medal (see the listing in http://lakes.chebucto.org/PEOPLE/naumann.html)!

uidelmes

Canadian Water Quality Guidelines

Phosphorus

This fact sheet describes the Canadian Guidance Framework for the management of phosphorus in freshwater systems. It is part of the series *Guidelines at a Glance*, which summarizes information for the Canadian public on toxic substances and other parameters for which there are Canadian Environmental Quality Guidelines.

The National Guidelines and Standards Office of Environment Canada coordinates the development of Canadian Environmental Quality Guidelines in cooperation with the Canadian Council of Ministers of the Environment (CCME).

Where does phosphorus come from?

Phosphorus exists naturally in rocks. An important source of phosphorus is phosphate rock, which contains the mineral apatite. Rocks release phosphorus as they erode under normal weather conditions. Phosphorus enters freshwater systems in four main ways: (i) atmospheric inputs, including rain and dust; (ii) point (discrete) sources, including sewage treatment plants and industrial effluents; (iii) non-point (diffuse) sources, including stormwater, agricultural, and land clearing runoff; and (iv) non-point sources from within the water system, including washout from riverbanks and re-suspension from sediments (internal loading). The rate at which phosphorus loads enter freshwater systems varies with land use, geology, morphology of the drainage basin, soil productivity, human activities, and pollution.

Products such as laundry detergents used to be a large source of phosphorus to freshwater systems. Regulations under the Canadian Environmental Protection Act now control the amount of phosphorus in these products because of the adverse effects of excess phosphorus on freshwater systems (e.g., toxic algal blooms).

What happens to phosphorus released into the environment?

In freshwater systems, phosphorus occurs in three forms: (i) inorganic phosphorus, (ii) particles of organic phosphorus, and (iii) dissolved organic phosphorus. Aquatic algae and plants use an inorganic form of phosphorus for their nutrition. In most lakes and rivers, phosphorus is the primary nutrient that limits the growth of algae and plants. In some systems, the nutrient form of phosphorus is taken up very quickly and so is difficult to measure accurately. Because of this difficulty, it is best to measure the total of all forms of phosphorus.

Excessive phosphorus in a freshwater system increases plant and algal growth. This can lead to: changes in number and type of plants and animals; increases in animal growth and size; increases in turbidity; more organic matter falling to the bottom of the system in the form of dead plants and animals; and losses of oxygen in the water. When there is no oxygen at the bottom of a freshwater system, phosphorus that previously had been locked in the sediment can be released back into the water. This is called internal loading and exacerbates the problem of excessively high productivity.

What effects can phosphorus have on fish and other forms of aquatic life?

Phosphorus can be toxic, but toxicity occurs rarely in nature and is generally not a concern. Of more concern are the indirect effects of phosphorus. All algae and plants require phosphorus to grow. Elevated phosphorus levels, however, can increase a freshwater system's productivity and result in large amounts of organic matter falling to the bottom. Bacteria and other organisms decompose this matter and in the process use a lot of oxygen. In very productive freshwater systems, the oxygen levels can be in such short supply that fish kills occur. A type of algae, called cyanobacteria, grows particularly well in high levels of phosphorus. Cyanobacterial blooms can cause a range of water

National Guidelines and Standards Office

Environment Canada

puge-4-

Guidelines at a Glance

Phosphorus

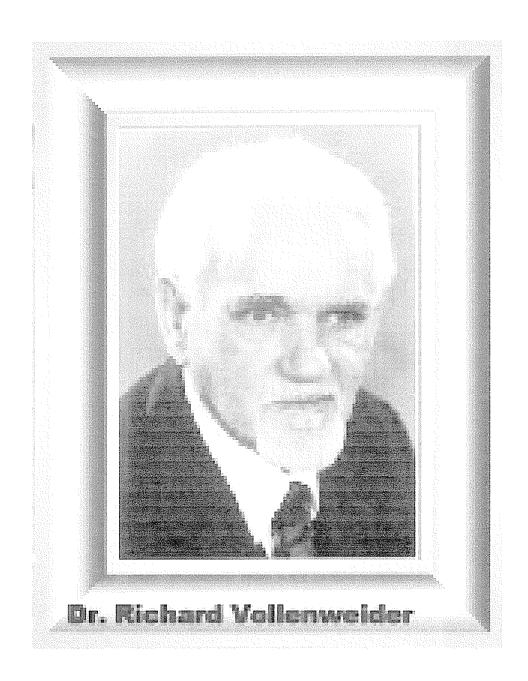
quality problems, including summer fish kills, bad odours, and tainted drinking water. Some cyanobacteria produce toxins that can kill livestock and wildlife.

What levels of phosphorus are safe for plants and animals that live in Canadian waters?

Total phosphorus (TP) levels vary widely in Canadian fresh waters. Some systems naturally have very low TP levels and may be described as oligotrophic (low nutrient status). Other systems naturally have high TP levels and are described as eutrophic (high nutrient status). Because of the wide variability of natural phosphorus levels in freshwater systems, it is not possible to establish a single meaningful guideline for phosphorus. Instead, a guidance framework has been developed to allow site-specific management of phosphorus.

The framework uses trigger ranges, which are ranges of desired phosphorus level for a specific freshwater system. The appropriate trigger range is determined according to baseline data and management objectives or goals for the system. If phosphorus levels in the system exceed 50 percent of the baseline level or the upper limit of the trigger range, there may be an environmental problem and further investigation is triggered. The trigger ranges for Canadian lakes and rivers are: <4, 4-10, 10-20, 20-35, 35-100, and >100 micrograms of TP per litre of water. The nutrient status labels for these trigger ranges are, in the same order as the ranges above: ultra-oligotrophic, oligotrophic, mesotrophic, meso-eutrophic, eutrophic, and hyper-eutrophic.

How do phosphorus levels in Canadian waters compare to the trigger ranges?


The phosphorus levels in Canadian lakes and rivers vary widely. Freshwater systems close to urban, residential, agricultural, industrial or other human activities likely have higher TP levels than they did before they were affected by humans. However, even freshwater systems far from human activities display a wide range of phosphorus levels. For example, lakes on bedrock such as the Pre-Cambrian Shield tend to have low TP levels. Lakes on sedimentary rocks such as the Boreal Plains of Alberta and lakes or wetlands with a lot of organic matter usually have higher TP levels.

Two case studies were examined to test the guidance framework for phosphorus. For the first, on Lake Simcoe, Ontario, a baseline TP level of 9-10 micrograms per litre of water was set because these are ideal levels for a cold water fishery. So, the lake was placed in the oligotrophic trigger range (4-10 micrograms per litre of water). In the 1970s, TP was 20 micrograms per litre of water and in the 1980s it was 15 micrograms per litre of water. These values exceed the trigger range. Phosphorus loading has been reduced to Lake Simcoe and remediation efforts continue.

The second case study was on Kodiak Lake, Northwest Territories, which has received effluents from a sewage treatment plant and now receives effluent from Canada's first diamond mine, which began operating in 1998. The baseline was defined as 11.1 micrograms of TP per litre of water, which was the average level of TP measured before construction of the mine began. So, Kodiak Lake was placed in the mesotrophic trigger range (10-20 micrograms per litre of water). This information helps form management decisions about lake monitoring and phosphorus reductions.

How can the guidance framework be used to make a difference?

In general, the guidance framework can be used by Canadian federal, provincial, and territorial governments on a voluntary basis to set local guidelines, discharge limits for industry, and clean-up targets. The trigger ranges are most commonly used in environmental assessments as benchmarks or yardsticks to which measured levels are compared. Anyone can use the guidance framework and trigger ranges to determine if the level of phosphorus measured in a sample of water has the potential to cause adverse environmental effects.

Soil & Water Conservation Society of Metro Halifax (SWCSMH)

310-4 Lakefront Road, Dartmouth, NS, Canada B2Y 3C4 Email: limnes@chebucto.ns.ca Tel: (902) 463-7777

Master Homepage: http://lakes.chebucto.org

Ref.: wrcc_2005November18 (1-page only for brevity; but further

clarification can be provided in person at your meetings, on invitation)

To: Chair and Members, Western Region Community Council,

HRM

From: S. M. Mandaville Post-Grad Dip. Professional Lake Manage.

Chairman and Scientific Director

Date: November 18, 2005

Subject: Request for the mandatory requirement of report(s) by a

`qualified limnologist' in projects relating to freshwaters (i.e., lakes or rivers) conducted directly/indirectly for the HRM, and/or by proponents of significant developments prior to approvals!

As common sense professionalism, our Province's Department of the Environment enacted a superb policy titled, "Storm Drainage Works Approval Policy" which came into effect on December 10, 2002.

It clearly states in Clause V.2, a possible requirement for approval as, "report(s) prepared by a qualified limnologist where lakes are located at outfalls or downstream of outfalls".

That has not been adhered to in almost all costly studies funded by (or for) the HRM! Even before that policy came into effect, pure common sense would have dictated such professionalism!

Further, every study should clearly indicate <u>names of the scientists</u> and of other professionals who were involved (not just the corporate names). They should also include their professional designations as well as any `acclaim' or `awards' received from independent scientific authorities or other agencies in the discipline of limnology and lake management. These could form a 1- or 2-page appendix!

The above requirement should also be binding upon any `in-house studies' conducted by the staff of HRM, or by its partnering academia, or by any of its Government partners, at any level!

This way, the varied assaults on freshwater biodiversity and cumulative effects on indicator organisms may be greatly reduced!

59 Jula.